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Abstract. In the present paper, we will show that for any integer n > 0 there are

infinitely many twisted torus knots with n-string essential tangle decompositions, and

that those all knots have essential tori in the exteriors.
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1. Introduction

Let p, q, r, s be integers with p > r > 1, q > 0, gcd(p, q) = 1, and let T (p, q) be the

torus knot of type (p, q) in S3. For the definition of torus knots T (p, q) we refer to [10].

Add s times full twists on mutually parallel r-strands in T (p, q). Then according as

[2], we call the knot obtained by this operation a twisted torus knot of type (p, q; r, s)

and denote it by T (p, q; r, s) as illustrated in Figure 1.

T(p, q ; r, s)
(p, q)-

torus braid
r-strands

s-times
full twists
on

Figure 1

Recently, several interesting results on twisted torus knots have been gotten ([3],

[4], [5], [6], [7], [8], [9]). In particular, we have shown in [7] that there are infinitely
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many composite twisted torus knots as follows :

Theorem 1.1 ([7, Theorem 1]). Let e > 0, k1 > 1, k2 > 1 be integers, and put

p0 = (e+ 1)(k1 + k2) + 1, q0 = e(k1 + k2) + 1, r0 = p0 − k1 and s0 = −1.

Then T (p0, q0; r0, s0) is the connected sum of the two torus knots T (k1, ek1 + 1) and

T (k2,−(e+ 1)k2 − 1).

In the present paper, as an extension of the above result, we will show that there

are infinitely many twisted torus knots with n-string essential tangle decompositions

for any integer n > 0, and that those all knots have essential tori in the exteriors as

follows :

Theorem 1.2. Let e > 0, k1 > 1, k2 > 1, x1 > 0, x2 > 0 be integers with

gcd(x1, x2) = 1. Put

p = ((e+ 1)(k1 + k2 − 1) + 1)x1 + (e+ 1)x2,

q = (e(k1 + k2 − 1) + 1)x1 + ex2,

r = ((e+ 1)(k1 + k2 − 1)− k1 + 2)x1 + ex2 and s = −1.

Then we have :

(1) T (p, q; r, s) has an x1-string essential tangle decomposition.

(2) The decomposition is obtained by the x1-string fusion of the torus knot T ((k1 −
1)x1 + x2, e((k1 − 1)x1 + x2) + x1) and the torus link T (k2x1,−((e+ 1)k2 + 1)x1).

(3) T (p, q; r, s) has an essential torus in the exterior whose companion is the torus

knot T (k2,−(e+ 1)k2 − 1).

Therefore, for any integer n > 0, by putting x1 = n we get infinitely many twisted

torus knots with n-string essential tangle decompositions.

Example 1.3. Put e = 1, k1 = k2 = 2, x1 = 2, x2 = 3. Then by Theorem 1.2, we see

that T (20, 11; 15,−1) has a 2-string essential tangle decomposition which is obtained

by the 2-string fusion of T (5, 7) and T (4,−10) as in Figure 2 (c.f. Example 3.2). In

addition, by tubing the decomposing 2-sphere along the torus link T (4,−10), we have

an essential torus whose companion is the torus knot T (2,−5).

Remark 1.4. Suppose x1 = 1 in Theorem 1.2. Then by putting k′1 = k1 + x2 − 1

and k′2 = k2, we have :

p = (e+ 1)(k1 + k2 − 1) + 1 + (e+ 1)x2 = (e+ 1)(k′1 + k′2) + 1,

q = e(k1 + k2 − 1) + 1 + ex2 = e(k′1 + k′2) + 1,

r = (e+ 1)(k1 + k2 − 1)− k1 + 2 + ex2 = p− k′1 and s = −1.

This shows that T (p, q; r, s) is a composite twisted torus knot if x1 = 1 as in Theorem

1.1.

Concerinig essential tori in the exteriors of twisted torus knots, S. Lee showed the

following (c.f. [9]) :
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T(20, 11 ; 15, -1)

T(5, 7) T(4, -10)

Figure 2

Theorem 1.5 ([4, Theorem 1]). Suppose r ≡ 0 (mod q). Then by putting r = qk

for some integer k, T (p, q; r, s) is the (q, p + k2qs)-cable knot along the torus knot

T (k, ks+ 1).

Hence we can ask the following :

Question Are there twisted torus knots with essenital tori which are not in Theorem

1.2 or in Theorem 1.5 ?

Concerning the above question, S. Lee has been recently shown the following :

Theorem 1.6 ([5, Theorem 1]). Suppose r ̸≡ 0 (mod q) and T (p, q; r, s) contains

an essential torus in the exterior. Then |s| ≤ 2.

Remark 1.7. Concerning the problem on the existence of essential closed surfaces

(not essential tori) in the exteriors of twisted torus knots, Theorem 1.2 says nothing

at all. Because the closed surfaces obtained by tubing the decomposing 2-spheres

along the strings of the tangles are not essential surfaces. On the essential surfaces

in the exteriors of twisted torus knots, it has been shown in [6] that T (p, q; r, s) has

no closed essential surfaces if r = 2.

Throughout the present paper, we will work in the piecewise linear category. For a

manifold X and a subcomplex Y in X, we denote a regular neighborhood of Y in X

by N(Y,X) or N(Y ) simply.

2. Parallelized torus knots and parallelized twisted torus knots

Let T (p0, q0) be the torus knot of type (p0, q0), where p0 and q0 are positive coprime

integers with p0 > 1, and let x1 and x2 be positive integers. Take four points P1,

P2, P3 and P4 on the adjacent two strands in T (p0, q0) as in Figure 3. Then replace
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the arc P1 through P3 with x1 parallel strings and the arc P2 through P4 with x2

parallel strings. In addition, replace the rectangle P1P2P3P4 with x1 + x2 strands as

in Figure 4. Then we get a torus knot or a torus link T (p, q) for some p, q.

T(p  , q  )
P P

PP

xx 12

x x1 2

1 2

34(p  , q  )-

torus braid0 0

0 0

Figure 3

P P

PP

1 2

34

x1x2

x1 x2

x1 x2= 3 , = 5 x1 x2= 5 , = 3

Figure 4

Let’s detect p and q. First, number the p0 strings below the (p0, q0)-torus braid

0, 1, 2, · · · , p0 − 2, p0 − 1 as in Figure 5. The arc starting at P1 goes into the braid at

p0 − 1 and goes out at q0 − 1. After round once, it goes into the braid again and goes

out at 2q0− 1. Next it goes out the braid at 3q0− 1. By continuing these procedures,

it finally goes out at aq0 − 1 ≡ p0 − 2 (mod p0) for some a. Then it meets the point

P3. Hence we have aq0 ≡ −1 (mod p0). Similarly the arc starting at P2 goes into the

braid at p0−2 and goes out at q0−2. Then it goes out the braid at 2q0−2, 3q0−2, · · ·,
and finally goes out at bq0 − 2 ≡ p0 − 1 (mod p0) for some b. Then it meets the point

P4. Hence we have bq0 ≡ 1 (mod p0).

Thus we have p = ax1+ bx2, where a and b are the least positive integers such that

aq0 ≡ −1 (mod p0), bq0 ≡ 1 (mod p0) and a+ b = p0.

By the similar arguments, we have q = cx1 + dx2, where c and d are the least

positive integers such that cp0 ≡ 1 (mod q0), dp0 ≡ −1 (mod q0) and c+ d = q0.
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P P

PP

1 2

34

0 1 2
p  -2

p  -1

0 1 2 q  -1 p  -2

p  -1

x1x2

x1 x2

0 0

0

0

0

Figure 5

In general, we have :

Proposition 2.1. For coprime positive integers p0 and q0, there uniquely exist

positive integers a, b, c, d which satisfy the following conditions :

(1)


a+ b = p0

aq0 ≡ −1 (mod p0)

bq0 ≡ 1 (mod p0)

(2)


c+ d = q0

cp0 ≡ 1 (mod q0)

dp0 ≡ −1 (mod q0)

Proof. Consider the set {0, q0, 2q0, · · · , (p0 − 1)q0}. Then, by gcd(p0, q0) = 1,

these p0 integers are different to each other (mod p0). Then this set coincides with

the set {0, 1, 2, · · · , p0 − 1} (mod p0), and hence there is only one integer a with

aq0 ≡ p0 − 1 ≡ −1 (mod p0). Then by putting b = p0 − a, we have bq0 = (p0 − a)q0 =

p0q0 − aq0 ≡ 0− (−1) = 1 (mod p0). This completes the proof of (1). The condition

(2) is proved similarly.

Under the above situations, we have :

Proposition 2.2. Let x1 and x2 be positive integers, and put p = ax1 + bx2 and

q = cx1 + dx2. Then gcd(p, q) = gcd(x1, x2). In particular, T (p, q) is a torus knot if

and only if gcd(x1, x2) = 1.

Proof. Put gcd(x1, x2) = k. Then we can put x1 = ky1, x2 = ky2 for some y1, y2,

and put p = k(ay1 + by2), q = k(cy1 + dy2). Hence gcd(p, q) ≥ k = gcd(x1, x2).

Conversely, put gcd(p, q) = k. Then we can put p = kp1, q = kq1 for some p1, q1.

Since

[
p

q

]
=

[
a b

c d

][
x1

x2

]
, we have :

[
x1

x2

]
=

1

ad− bc

[
d −b

−c a

][
kp1

kq1

]
· · · 1⃝

Then |ad − bc| < p0q0 − 1 because 0 < a, b < p0 and 0 < c, d < q0. Moreover

ad − bc = a(q0 − c) − (p0 − a)c = aq0 − cp0 ≡ −1 (mod p0), (mod q0). This implies
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that ad − bc = −1, and by 1⃝ we have gcd(x1, x2) ≥ k = gcd(p, q). This completes

the proof.

By summarizing the above arguments, we have :

Proposition 2.3. Let T (p0, q0) be the torus knot of type (p0, q0) with p0 > 1, q0 > 0,

gcd(p0, q0) = 1, and let x1, x2 be positive integers. Then by the parallelization of

T (p0, q0), we have a torus knot or a link T (p, q) with p = ax1+bx2 and q = cx1+dx2,

where (a, b, c, d) are uniquely determined by the conditions in Proposition 2.1.

Next, let T (p0, q0; r0, s0) be a twisted torus knot. Then by the same way as the case

of torus knots, we can construct a parallelized twisted torus knot or a link T (p, q; r, s).

Then p = ax1 + bx2, q = cx1 + dx2, r = r1x1 + r2x2 and s = s0, where a, b, c, d are

those integers in Proposition 2.1 and r1, r2 are some positive integers with r1+r2 = r0.

Let’s detect r1 and r2. To do this, we need to count the numbers of the intersection

of the arc P1 through P3 and the box of the r0-strings in Figure 6. Then, since the arc

P1 through P3 goes out from the (p0, q0)-torus braid at the string kq0−1 (mod p0) (k =

1, 2, · · · , a), by the same arguments as those to determine the integer a in Proposition

2.1, we can put r1 and r2 as follows, where # is the cardinal number of the given set

: {
r1 = #{ k | 0 ≤ kq0 − 1 (mod p0) ≤ r0 (k = 1, 2, · · · , a)}
r2 = r0 − r1

· · · (∗)

P P

PP

1 2

34

0 1 2
p  -2

p  -1

p  -1

x1x2

x1 x2

0

0

0

r
0

- strings

Figure 6

By summarizing the above arguments, we have :

Proposition 2.4. Let T (p0, q0; r0, s0) be the twisted torus knot of type (p0, q0; r0, s0)

with p0 > r0 > 1, q0 > 0, gcd(p0, q0) = 1, and let x1, x2 be positive integers. Then by

the parallelization of T (p0, q0; r0, s0), we have a twisted torus knot or a link T (p, q; r, s)

with p = ax1 + bx2, q = cx1 + dx2, r = r1x1 + r2x2 and s = s0, where (a, b, c, d) and
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(r1, r2) are uniquely determined by the conditions in Proposition 2.1 and the above

condition (∗).

We note that T (p, q; r, s) is a knot if and only if gcd(x1, x2) = 1 by Proposition 2.2.

3. Proof of Theorem 1.2

Let B be a 3-ball, and let t1 ∪ t2 ∪ · · · ∪ tn be the n arcs properly embedded in

B. Then we call the pair (B, t1 ∪ t2 ∪ · · · ∪ tn) an n-string tangle. We say that

(B, t1 ∪ t2 ∪ · · · ∪ tn) is essential if cl(∂B −N(t1 ∪ t2 ∪ · · · ∪ tn)) is incompressible in

cl(B − N(t1 ∪ t2 ∪ · · · ∪ tn)) if n > 1, and t1 is a knotted arc in B if n = 1, where

N(t1 ∪ t2 ∪ · · · ∪ tn) is a regular neighborhood of t1 ∪ t2 ∪ · · · ∪ tn in B, and that

the tangle is inessential if it is not essential. We say that a knot K in the 3-sphere

S3 has an n-string essential tangle decomposition if (S3,K) is decomposed into two

n-string essential tangles (B1, t
1
1 ∪ t21 ∪ · · · ∪ tn1 ) ∪ (B2, t

1
2 ∪ t22 ∪ · · · ∪ tn2 ), and that the

decomposition is inessential if it is not essential.

To prove Theorem 1.2, we construct parallelized twisted torus knots from composite

twisted torus knots, and we will show that the decomposing 2-sphere of the connected

sum becomes the decomposing 2-sphere of the tangle decomposition.

Recall Theorem 1.1 ([7, Theorem 1]). To get parallelized twisted torus knots from

the composite knots in Theorem 1.1, first we calculate the integers a, b, c, d in Propo-

sition 2.1 to get p and q.

Proposition 3.1. Put p0 = (e+1)(k1+ k2)+1 and q0 = e(k1+ k2)+1. Then those

integers a, b, c, d in Proposition 2.1 are as follows :

a = (e+ 1)(k1 + k2 − 1) + 1, b = e+ 1, c = e(k1 + k2 − 1) + 1 and d = e.

Proof. First we have b = e + 1, because (e + 1)q0 = (e + 1)(e(k1 + k2) + 1) =

(e + 1)e(k1 + k2) + e + 1 = e((e + 1)(k1 + k2) + 1) + 1 = ep0 + 1 ≡ 1 (mod p0).

Then a = p0 − b = (e + 1)(k1 + k2) + 1 − (e + 1) = (e + 1)(k1 + k2 − 1) + 1 and

aq0 = (p0 − b)q0 = p0q0 − bq0 ≡ −1 (mod p0).

Next we have d = e because ep0 = e((e+1)(k1+k2)+1) = e(e+1)(k1+k2)+e = (e+

1)e(k1+k2)+e+1−1 = (e+1)(e(k1+k2)+1)−1 = (e+1)q0−1 ≡ −1 (mod q0). Then

c = q0−d = e(k1+k2)+1−e = e(k1+k2−1)+1 and cp0 = (q0−d)p0 = q0p0−dp0 ≡ 1

(mod q0). This completes the proof.

To calculate r and to get concrete expression of the tangle decompositions, consider

the composite twisted torus knots in Theorem 1.1. Put K0 = T (p0, q0; r0, s0), K1 =

T (k1, ek1+1) and K2 = T (k2,−(e+1)k2−1), then K0 = K1#K2 as in Theorem 1.1.

Let V be a standard genus two handlebody in S3, and put ∂V = F . Then, since any

twisted torus knot can be embedded in F in a standard way, we may assume that K0

is in F . Let S be the decomposing 2-sphere of the connected sum K0 = K1#K2, then,
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by the proof of Theorem 1.1 in [7], we may assume that S intersects V in a single

separating disk which is a union of two mutually parallel non-separating disks and a

band, and that S ∩F = ∂(S ∩ V ) is a single loop. Then, by noting that p0 − r0 = k1,

S∩F runs along the both sides of k1 strings and (S∩F )∩K0 consists of the two points

Q1 and Q2 indicated in Figure 7, where Figure 7 is the case of e = 1, k1 = 3, k2 = 2

and the connected sum is T (11, 6; 8,−1) = T (3, 4)#T (2,−5).

x
1

k1

x
1

x2

x2

Q1
Q2

S    F

V

strings

Figure 7

We split K0 at Q1, Q2 into two arcs, and connect the two points with the arc in

the disk S ∩ V . Then we get the two knots K1 and K2. First we consider K1 as in

Figure 8, where Figure 8 is the case of k1 = 5. Then, by noting that p0 − r0 = k1

and K1 = T (k1, ek1 + 1), we see that the arc P2 through P4 is contained in K1, and

hence exactly one string of k1 strings is replaced with x2 parallel strings. Then the

other (k1−1) strings are contained in the arc P1 through P3 and are replaced with x1

parallel strings. Thus we get the torus knot T ((k1−1)x1+x2, e((k1−1)x1+x2)+x1),

and this torus knot intersects the original decomposing 2-sphere in x1 points at each

Qi (i = 1, 2). This implies that r = p− ((k1 − 1)x1 + x2).

For the knot K2, by the above arguments, we see that the whole string of K2 is

contained in the arc P1 through P3. Hence by replacing the whole string with x1
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e-times

full twists
x1

x1

x2

x1x1x1

x2
Q1

Q2

P

P

1

4

P

P

2

3

Figure 8

parallel strings, we get the torus link T (k2x1,−((e + 1)k2 + 1)x1). This torus link

intersects the original decomposing 2-sphere in x1 points at each Qi (i = 1, 2) similarly

to the case of K1.

By summarizing the above calculations, we have the following, and get the knots

in Theorem 1.2.

p = ax1 + bx2 = ((e+ 1)(k1 + k2 − 1) + 1)x1 + (e+ 1)x2

q = cx1 + dx2 = (e(k1 + k2 − 1) + 1)x1 + ex2

r = p− ((k1−1)x1+x2) = ((e+1)(k1+k2−1)+1)x1+(e+1)x2− ((k1−1)x1+x2)

= ((e+ 1)(k1 + k2 − 1)− k1 + 2)x1 + ex2

s = s0 = −1

Finally, we need to show that the above tangle decompositions are all essential. If

x1 = 1, then the decompositions are the connected sums and are all essential because

both k1 and k2 are greater than one and factor knots are non-trivial knots.

Suppose x1 > 1. By the definition of tangles, we see that an n-string tangle (B, t1∪
t2 ∪ · · · ∪ tn) with n > 1 is essential if and only if there is no disk properly embedded

in B which separates the arcs t1 ∪ t2 ∪ · · · ∪ tn. From this view point, in the next

section, we will show that both of x1-string tangles constructed from the torus knot

T ((k1−1)x1+x2, e((k1−1)x1+x2)+x1) and the torus link T (k2x1,−((e+1)k2+1)x1)

are essential (Propositions 4.2 and 4.3).

In addition, by tubing the decomposing 2-sphere along the torus link T (k2x1,−((e+

1)k2 + 1)x1) with x1-string bunches, we have an essential torus whose companion is

the torus knot T (k2,−(e+ 1)k2 − 1). This completes the proof of Theorem 1.2.

Example 3.2. Put e = 1, k1 = k2 = 2, and let x1, x2 be positive integers. Then

by the above arguments, p = 7x1 + 2x2, q = 4x1 + x2, r = 6x1 + x2 and T (p, q; r,−1)
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is the x1-string fusion of T (x1 + x2, 2x1 + x2) and T (2x1,−5x1). Hence by putting

x1 = 2, x2 = 3, we see that T (20, 11; 15,−1) is the 2-string fusion of T (5, 7) and

T (4,−10), and this is the example in Example 1.3. If we put x1 = 2 and x2 = 1, then

we see that T (16, 9; 13,−1) is the 2-string fusion of T (3, 5) and T (4,−10). This is the

smallest example of our knots.

4. Essential tangles

Let p, q be coprime integers with 1 < p < q, and k an integer with 0 < k < p.

Consider the torus knot T (p, q) and take an arc α which intersects k strings in the

parallel p strings of T (p, q) as in Figure 9(1). Let N(α) be a regular neighborhood of

α in S3. Put B = cl(S3 − N(α)) and t(p, q; k) = cl(T (p, q) − N(α)). Then the pair

(B, t(p, q; k)) is a k-string tangle as in Figure 9(2).

k strings

α

(p, q)-

torus braid

(p, q)-

torus braid

(1) (2)

Figure 9

Lemma 4.1. The tangle (B, t(p, q; k)) has a knotted component.

Proof. Put t(p, q; k) = t1∪t2∪· · ·∪tk. By p < q, we can put q = np+m (0 < m < p).

Then, since t1, t2, · · · , tk are arcs properly embedded in B each of which is a local torus

knot, we can put ti = t(ai, nai + ci; 1) (i = 1, 2, · · · , k), where a1 + a2 + · · ·+ ak = p,

c1 + c2 + · · ·+ ck = m and we have q = n(a1 + a2 + · · ·+ ak) + (c1 + c2 + · · ·+ ck).

Suppose ai = 1 for all i = 1, 2, · · · , k. Then p = a1 + a2 + · · · + ak = k < p. This

contradiction shows that there is at least one i0 with ai0 > 1. Then, since n > 0

and ci0 > 0, the arc ti0 = t(ai0 , nai0 + ci0 ; 1) is a knotted component because of

nai0 + ci0 > ai0 > 1.

Proposition 4.2. The tangle (B, t(p, q; k)) is an essential tangle.

Proof. Suppose the tangle (B, t(p, q; k)) is inessential. Then, by the definition

of essential tangles, there is a disk properly embedded in B which separates those
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components. Then we may assume that the disk splits those components into two

classes t1 ∪ · · · ∪ tj and tj+1 ∪ · · · ∪ tk and that the knotted component ti0 of Lemma

4.1 is contained in t1 ∪ · · · ∪ tj . Consider the 2-string tangle (B, ti0 ∪ tk). Then, since

ti0 is a knotted component and it is splitted from tk, cl(B − N(ti0 ∪ tk)) is not a

handlebody. However, since torus knots or links have tunnel number one and the arc

connecting adjacent two strings is an unknotting tunnel by [1], we see that (B, ti0∪tk)
is a free tangle and cl(B−N(ti0 ∪ tk)) is a genus two handlebody. This contradiction

completes the proof.

Proposition 4.3. For any positive integer x > 0, the tangle (B, t(xp,−xq;x)) is an

essential tangle.

Proof. Since t(p,−q; 1) is a knotted arc properly embedded in B, the tangle

(B, t(p,−q; 1)) is an essential tangle. Then by replacing the arc with x strings, we see

that (B, t(xp,−xq;x)) is an essential tangle.
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