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Abstract

Tunnel number of a knot is a geometric invariant of a knot in the 3-sphere,

and has interesting properties related to the connected sum of knots. In this

article, we show the existence of infinitely many pairs of knots each tunnel

number of which goes up under tne connected sum, and show the existence of

infinitely many pairs of knots each tunnel number of which goes down under the

connected sum. In addition, we study the degeneration ratio of tunnel numbers

under the connected sum.

1. Introduction

In the present article, we introduce the tunnel numbers of knots in the 3-sphere S3,

and calculate the tunnel numbers of several examples. Further, we study the relation

between the tunnel numbers and the connected sum of knots.

This geometric invariant, the tunnel number, is closely related to the Heegaard

genus of the 3-manifolds as the knot exteriors. Therefore, in studying tunnel numbers

of knots, we need not only knot theoretical technique but also 3-manifold topology

argument. For knot theory we refer to Rolfsen’s book [Rs] and for 3-manifold topology

we refer to Hempel’s book [He].

2. Definitions and examples

To define the tunnel number, we need :

Fact 2.1 For any knot K in the 3-sphere S3, there is an arc system {γ1, γ2, · · · , γt}
in S3 with (γ1 ∪ γ2 ∪ · · · ∪ γt) ∩ K = ∂(γ1 ∪ γ2 ∪ · · · ∪ γt) such that the exterior

of the union of K and the arcs is homeomorphic to a genus t + 1 handlebody, i.e.,

cl(S3 −N(K ∪ γ1 ∪ γ2 ∪ · · · ∪ γt) ∼= a genus t + 1 handlebody, where N(·) denotes a

regular neighborhood.

Definition2.2 We call the arc system in Fact 2.1 an unknotting tunnel system of K.
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In particular, if the system consists of a single arc, then we call the arc an unknotting

tunnel of K.

Definition2.3 We define the tunnel number of K, denoted by t(K), as the minimal

number of the arcs among all unknotting tunnel systems of K.

Proof of Fact 2.1. Consider the projection of K. Then we can take a small arc

γi (i = 1, 2, · · · , c) at each crossing point, where c is the crossing number of the

projection.

γ γ

γ

γ

1 2

3

c a standard genus c+ 1 handlebody

Figure 1: an unknotting tunnel system

Then, by the deformation in Figure 1, N(K ∪ γ1 ∪ γ2 ∪ · · · ∪ γc) is isotopic to a

standard genus c+ 1 handlebody in S3. This means that the exterior of N(K ∪ γ1 ∪
γ2 ∪ · · · ∪ γc) is also a genus c+ 1 handlebody, and completes the proof.

Examples

(1) The trivial knot has tunnel number 0.

(2) The trefoil knot has tunnel number 1.

(3) The knot 816 in Rolfsen’s table ([Rs]) has tunnel number 2.

(4) Every 2-bridge knot has tunnel number 1.

(5) Every torus knot has tunnel number 1.

(6) Let pi be an odd integer with |pi| > 1 (i = 1, 2, 3), and let K be the pretzel knot

of type (p1, p2, p3). Then K has tunnel number 2.

Proof. (1) The exterior of the trivial knot is homeomorphic to the solid torus, i.e., a

genus 1 handlebody. Thus the trivial knot has tunnel number 0.

(2) By the deformation in Figure 2, we see that the arc γ is an unknottin tunnel of

the trefoil knot. Thus the trefoil knot has tunnel number 1 because the trefoil knot

is a non-trivial knot.

γ

Figure 2: an unknotting tunnel
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(3) The knot illustrated in Figure 3 is 816 in Rolfsen’s table ([Rs]). Then, by a little

deformation, we see that the graph K ∪ γ1 ∪ γ2 becomes a trivial graph as in Figure

3. This means that the arc system {γ1, γ2} is an unknotting tunnel system of 816,

and hence t(816) ≤ 2, On the other hand, by the deformation in Figure 4, we see

that 816 has a 2-string essential tangle decomposition, where the definition of tangle

decomposition will be given after Theore 3.5. Thus, by [Sm], t(816) ≥ 2. Thus t(816)

has tunnel number 2.

γ
1 γ

2

Figure 3: an unknotting tunnel system of 816

Figure 4: a 2-string essential tangle decomposition of 816

(4) Every 2-bridge knot K has a 2-string trivial tangle decomposition as in Figure 5.

Then, the arc γ is an unknotting tunnel, and hence t(K) = 1.

γ

K =

Figure 5: an unknotting tunnel of a 2-bridge knot

(5) For every torus knot K, take an arc γ indicated in Figure 6, i.e., the arc connecting
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adjascent parallel two strings, where the knot illustrated in Figure 6 is the torus knot

of type (5, 4). Then, by [BRZ], the arc γ is an unknotting tunnel, and hence t(K) = 1.

γ

K =

Figure 6: an unknotting tunnel of a torus knot

(6) For a pretzel knot K of type (p1, p2, p3), the arc system {γ1, γ2} as in Figure 7 is

an unknotting tunnel system of K, where the pretzel knot illustrated in Figure 7 is

of type (3, 5, 7). Then by [MSY2], we have t(K) = 2.

γ
1 γ

2

K =

Figure 7: an unknotting tunnel system of a pretzel knot

3. Connected sum

Let K1 and K2 be two knots in S3. Then the connected sum of K1 and K2, denoted

by K1#K2, is defined as in Figure 8.

The behavior of geometric invariants under connected sum is a very interesting

problem in knot theory. For example, for the Seifert genus g(K), we have in [Rs]:

g(K1#K2) = g(K1) + g(K2)
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K1 K2 K1#K2

Figure 8: the connented sum

This means that the Seifert genus is additive under connected sum. For the bridge

index b(K), by [Sb], we have:

b(K1#K2) = b(K1) + b(K2)− 1

In this case, b(K) − 1 is additive under connected sum. On the other hand, for

the unknotting number u(K) or th crossing number c(K), it is still unknown if those

invariants are additive or not.

Now, for the tunnel numbers, the most basic fact is:

Fact 3.1 t(K1#K2) ≤ t(K1) + t(K2) + 1

Proof. Let {γ1, γ2, · · · , γt} be the unknotting tunnel system of K1 and {δ1, δ2, · · · , δs}
be the unknotting tunnel system of K2. Consider the arc system {γ1, γ2, · · · , γt, δ1, δ2,
· · · , δs, ρ}, obtained from the union of the two unknotting systems by adding an extra

arc ρ indicated in Figure 9. Then we can see that it is an unknotting tunnel system

of K1#K2. It should be noted that, in general, we need the extra arc ρ to obtain an

unknotting tunnel system of the connected sum.

γ
1

δ
1

γ
δ

ρ

t
s

Figure 9: an unknotting tunnel system of the connented sum

In the early years of research of tunnel numbers, there were very few families of

knots whose tunnel numbers were identified. In fact, we had only 2-bridge knots

and torus knots. In addition, for any 2-bridge knots or any torus knots K1,K2, the

additivity t(K1#K2) = t(K1)+ t(K2) holds. Therefore, those days, the following two

questions had puzzled knot theorists.

Q1 : Are there knots K1,K2 such that t(K1#K2) = t(K1) + t(K2) + 1 ?

Q2 : Are there knots K1,K2 such that t(K1#K2) < t(K1) + t(K2) ?
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The first result on the additivity problem of tunnel numbers is :

Theorem 3.2 ([Nw], [Sm]) Tunnel number one knots are prime.

This theorem says that there are no knots K1,K2 as in Q2 with t(K1#K2) = 1.

However, in 1990’s, such knots as in Q1 and Q2 were found as follows :

Theorem 3.3 ([MSY1]) Let Km be the knot as in Figure 10. Then t(Km) =

t(Km′) = 1 and t(Km#Km′) = 3 for any integers m and m′, i.e., “1 + 1 = 3”.

10m - 4 crossings

(7, 17) - torus braid 

Figure 10: the knot Km

Theorem 3.4 ([M2]) Let Kn be the knot as in Figure 11 for any integer n ̸= 0,−1.

Then t(Kn) = 2 and t(Kn#K ′) = 2 for any 2-bridge knot K ′, i.e., “2 + 1 = 2”.

(4, 3) - 

torus braid 
2n + 1 

crossings

Figure 11: the knot Kn

Soon after that, we succeeded to characterize those knot types with “2+ 1 = 2” as

follows :

Theorem 3.5 ([M3]) Let K be a tunnel number two knot. Then, the tunnel number

of K#K ′ is two again for any 2-bridge knot K ′ if and only if K has a 2-string
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essential free tangle decomposition (S3,K) = (B1, t
1
1 ∪ t21)∪ (B2, t

1
2 ∪ t22) such that one

of the two tangles has an unknotted component.

In this theorem, a “2-string essential free tangle decomposition” means a decompo-

sition of a knot into two 2-string essential free tangles, where a 2-string essential free

tangle is a pair (B, t1 ∪ t2) of a 3-ball B and a pair of arcs t1 ∪ t2 properly embedded

in B, such that t1 and t2 cannot be separated in B and the exterior of t1 ∪ t2 in B is

a genus two handlebody.

Figure 12: a 2-string essential free tangle with an unkntted component

Hence, by Figure 4, 816 has a 2-string essential free tangle decomposition such that

one of the two tangles has an unknotted component. This means that t(816) = 2 and

t(816#K ′) = 2 for any 2-bridge knot K ′. Since the knots up to 7 crossings ara all

2-bridge knot, we see that 816 is the first tunnel number two knot with tunnel number

degeneration.

By the way, we here introduce a concept of “meridionally primitive”. Let K be a

knot with the tunnel number t. Then there is a genus t+1 Heegaard splitting (V1, V2)

of S3 such that V1 contains K as a central loop of a handle.

Definition 3.6 We say that K is meridionall primitive if there is a genus t + 1

Heegaard splitting (V1, V2) as above such that there is a meridian disk D1 of V1 and a

meridian disk D2 of V2 with D1 ∩K = 1 point and D1 ∩D2 = ∂D1 ∩ ∂D2 = 1 point.

Then, concerning Q1, we had gotten the following :

Theorem 3.7 ([M1, M4]) Let K1 and K2 be two knots with t(K1) = t(K2) = 1.

Then t(K1#K2) = 3 if and only if none of K1 and K2 is meridionally primitive.

We proved Theorem 3.3 by using this theorem. In fact, we proved that the knot

Km is not a meridionally primitive via Quantum ivariant formula due to Yokota ([Y]).

As a generalyzation of Theorem 3.7, we have ;

Theomre 3.8 ([M4]) Let K1 and K2 be two knots in S1 and suppose both K1 and

K2 are meridionally small. Then t(K1#K2) = t(K1) + t(K2) + 1 if and only if none

of K1 and K2 is meridionally primitive.
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In this theorem, we say that a knot K is meridionally small if the exterior E(K) =

cl(S3 − N(K)) contains no properly embedded essential surface F such that each

component of ∂F is a meridian of K. By using the concept “meridionall small”, we

got the following :

Theorem 3.9 ([M5]) Let K1,K2, · · · ,Kn be all meridionally small knots in S3.

Then we have t(K1#K2# · · ·#Kn) ≥ t(K1) + t(K2) + · · ·+ t(Kn).

Even if we drop the assumption of “meridionally small”, Scharlemann and Schultens

got the following :

Theorem 3.10 ([SS1]) Let K1,K2, · · · ,Kn be knots in S3. Then we have

t(K1#K2# · · ·#Kn) ≥ n.

By the way, in studying of 3-manifolds, it is very important if a given 3-manifold

contains an essential torus or not. As such studying for knot exteriors, we have

characterized the knot types of tunnel number one knots containing essential tori in

[MS].

4. Degeneration ratio

In the studying of the degeneration of tunnel numers, it seems that the ratio of

t(k1#K2) to t(K1) + t(K2) is more important than the difference between t(k1#K2)

and t(K1) + t(K2). Therefore Schrlemann and Schultens introduced the degeneration

ratio d(K1,K2) for any two knots K1 and K2 as follows :

d(K1,K2) = 1− t(K1#K2)

t(K1) + t(K2)

Our first example “2+1=2” has the degeneration ration 1
3 as follows :

d(K1,K2) = 1− 2

2 + 1
=

1

3

Then we can ask :

Q3 : What is the upper limit of the degeneration ratio ?

Concerning this question, Scharlemann and Schultens got :

Thoerem 4.1 ([SS2])] For any two prime knots K1 and K2, we have d(K1,K2) ≤
3

5
.

Recently, as the next step to “2+1=2”, Nogueira got :

Theorem 4.2 ([Ng]) There are infinitely many pairs of knot K1 and K2 such that
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t(K1) = 3, t(K2) = 2 and t(K1#K2) = 3, i.e., “3 + 2 = 3′′.

In this therem, Nogueira have gotton the concrete examples by using the knot Km

in Figure 10. Then the degeneration ratio is 2
5 as follows :

d(K1,K2) = 1− 3

3 + 2
=

2

5

For the time being, this example is the biggest degeneration ratio. Thus, as the

sequence of the series, we can ask :

Q4 : Are there infinitely many pairs of knot K1,K2 such that “4+3=4”, “5+4=5”,

“6+5=6”, “7+6=7”, · · · ?

If there is such a sequence, we have the sequence of degeneration ratio 3
7 ,

4
9 ,

5
11 ,

6
13 ,

7
15 , · · · →

1
2 .

Concerning the degeneration ratio, we have several examples and results in [M6].
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