On Heegaard splittings of knot exteriors with tunnel number degenerations

Kanji Morimoto
Department of IS and Mathematics, Konan University Okamoto 8-9-1, Higashi-Nada, Kobe 658-8501, Japan
e-mail: morimoto@konan-u.ac.jp

Abstract

Let K_{1}, K_{2} be two knots with $t\left(K_{1}\right)+t\left(K_{2}\right)>2$ and $t\left(K_{1} \# K_{2}\right)=2$. Then, in the present paper, we will show that any genus three Heegaard splittings of $E\left(K_{1} \# K_{2}\right)$ is strongly irreducible and that $E\left(K_{1} \# K_{2}\right)$ has at most four genus three Heegaard splittings up to homeomorphism. Moreover, we will give a complete classification of those four genus three Heegaard splittings and describe unknotting tunnel systems of knots $K_{1} \# K_{2}$ corresponding to those Heegaard splittings.

Keywords: Heegaard splitting, unknotting tunnel system 2010 MSC: 57M25, 57M27

1. Introduction

Let K be a knot in S^{3} and $t(K)$ the tunnel number of K, where $t(K)$ is the minimal number of arcs properly embedded in the exterior $E(K)$ whose complementary space is homeomorphic to a handlebody. By the definition of the tunnel number, we have $t(K)=g(E(K))-1$, where $g(E(K))$ is the Heegaard genus of $E(K)$.

Let K_{1} and K_{2} be two knots in S^{3} and $K_{1} \# K_{2}$ the connected sum of K_{1} and K_{2}. Then, on the degeneration problem of tunnel numbers, i.e., the problem that if there are knots K_{1} and K_{2} with $t\left(K_{1} \# K_{2}\right)<t\left(K_{1}\right)+t\left(K_{2}\right)$ or not, our first result is the following:

Theorem 1 ([4]). There are infinitely many pairs of knots K_{1} and K_{2} such that $t\left(K_{1}\right)=1, t\left(K_{2}\right)=2$ and $t\left(K_{1} \# K_{2}\right)=2$.

We say that a knot K has a 2 -string essential free tangle decomposition if $\left(S^{3}, K\right)$ is decomposed into ($B_{1}, K \cap B_{1}$) and ($B_{2}, K \cap B_{2}$) such that ($B_{i}, K \cap$ $\left.B_{i}\right)$ is a 2-string essential tangle and $\operatorname{cl}\left(B_{i}-N\left(K \cap B_{i}\right)\right)$ is a genus two handlebody for both $i=1,2$, where $N(\cdot)$ denotes a regular neighborhood. Then we have characterized those knots in Theorem 1 as follows:

Theorem 2 ([5]). Let K_{1} and K_{2} be two knots in S^{3}. Then we have :
(1) If $t\left(K_{1}\right)+t\left(K_{2}\right)>2$ and $t\left(K_{1} \# K_{2}\right)=2$, then $t\left(K_{1}\right)+t\left(K_{2}\right)=3$.
(2) $t\left(K_{1}\right)=1, t\left(K_{2}\right)=2$ and $t\left(K_{1} \# K_{2}\right)=2$ if and only if K_{1} is a 2-bridge knot and K_{2} is a knot with a 2-string essential free tangle decomposition such that at least one of the two tangles has an unknotted component.

In the present paper, we investigate genus three Heegaard splittings of such knot exteriors $E\left(K_{1} \# K_{2}\right)$ in Theorem 2(2) and describe unknotting tunnel systems of $K_{1} \# K_{2}$ corresponding to those Heegaard splittings. First we will show:

Theorem 3. Let K be a tunnel number two knot in S^{3}. Suppose a genus three Heegaard splitting of $E(K)$ is weakly reducible, then $E(K)$ is obtained from $E\left(K_{1}\right)$ and the exterior $E_{V}\left(K_{2}\right)$ of K_{2} in V by gluing $\partial E\left(K_{1}\right)$ and ∂V, where K_{1} is a tunnel number one knot in S^{3} and K_{2} is a tunnel number one knot in a solid torus V.

Then we get:
Corollary 1. Let K_{1} and K_{2} be two knots in Theorem 2(2). Then any genus three Heegaard splitting of $E\left(K_{1} \# K_{2}\right)$ is strongly irreducible.

Remark 1. In [3], it has been shown by Moriah that genus three Heegaard splittings of $E\left(K_{1} \# K_{2}\right)$ are strongly irreducible for some subfamily of those knots K_{1}, K_{2} in Theorem 2(2).

Next we have:
Theorem 4. Let K_{1} and K_{2} be two knots in Theorem 2(2). Then $E\left(K_{1} \# K_{2}\right)$ has at most four genus three Heegaard splittings up to homeomorphism.

To give a complete classification of those four genus three Heegaard splittings in Theorem 4, we assume :
K_{1} is a 2-bridge knot $S(\alpha, \beta)$ (Schubert's notation in [10]).
K_{2} has a 2 -string essential free tangle decomposition such that:
$\left(S^{3}, K_{2}\right)=\left(C_{1}, K_{2} \cap C_{1}\right) \cup\left(C_{2}, K_{2} \cap C_{2}\right)$ and
C_{1} contains an unknotted component.
To state the classification theorem, we put the following cases:
Case 1: C_{2} contains no unknotted component.
Case 2: C_{2} contains an unkontted component.
Furthermore, we divide Case 2 into the following two sub-cases:
Case 2a: there is a self-homeomorphism of $\left(S^{3}, K_{2}\right)$ exchanging the two tangles ($C_{1}, K_{2} \cap C_{1}$) and ($C_{2}, K_{2} \cap C_{2}$).
Case 2b: there is no self-homeomorphism of (S^{3}, K_{2}) exchanging the two tangles ($C_{1}, K_{2} \cap C_{1}$) and ($C_{2}, K_{2} \cap C_{2}$).
Then we get:
Theorem 5. Let K_{1} and K_{2} be two knots in Theorem 2(2). Then we have the following complete classification of genus three Heegaard splittings of $E\left(K_{1} \# K_{2}\right)$ up to homeomorphism, where n is the number of homeomorphism classes.

$$
\begin{aligned}
& \text { Case } 1 \begin{cases}n=1 & \text { if } \beta \equiv \pm 1(\bmod \alpha) \\
n=2 & \text { if } \beta \not \equiv \pm 1(\bmod \alpha)\end{cases} \\
& \text { Case } 2 \mathrm{a} \begin{cases}n=1 & \text { if } \beta \equiv \pm 1(\bmod \alpha) \\
n=2 & \text { if } \beta \not \equiv \pm 1(\bmod \alpha)\end{cases} \\
& \text { Case } 2 \mathrm{~b} \begin{cases}n=2 & \text { if } \beta \equiv \pm 1(\bmod \alpha) \\
n=4 & \text { if } \beta \not \equiv \pm 1(\bmod \alpha)\end{cases}
\end{aligned}
$$

Remark 2. The condition $\beta \equiv \pm 1(\bmod \alpha)$ is equivalent to that K_{1} is a torus knot.

Example 1. In Figure 1, (i) is a 2-string essential free tangle with an unknotted component, and (ii) is a 2 -string essential free tangle witn no unknotted component.

(i)

(ii)

Figure 1: 2-string essential free tangles

Example 2. In Figure 2, (i) is a knot which has a 2-string essential free tangle decomposition such that one of the tangles has an unknotted component, and (ii) is a knot which has a 2 -string essential free tangle decomposition such that both tangles have unknotted components, i.e., (i) is in Case 1 and (ii) is in Case 2 of Theorem 5 .

Figure 2: Knots with 2-string essential free tangle decompositions

Example 3. The knot illustrated in Figure 3 is Case 1 of Theorem 5 and the 2-bridge knot is of type $(23,7)$, i.e., $\beta \not \equiv \pm 1(\bmod \alpha)$. Thus the knot exterior of the composite knot has two genus three Heegaard splittings, and the corresponding unknotting tunnel systems are $\left\{\tau_{1}, \tau_{2}\right\}$ and $\left\{\sigma_{1}, \sigma_{2}\right\}$ indicated in the figure.

Example 4. The two knots illustrated in Figure 4 are the same knots, because by sliding the 2 -bridge knot along a sub-arc of the given knot, we can get the right-hand side knot from the left-hand side knot. Thus, since this case is Case 2 b of Theorem 5 , the knot exterior of the knot has four genus three Heegaard splittings and the corresponding unknotting tunnel systems are $\left\{\tau_{1}, \tau_{2}\right\},\left\{\sigma_{1}, \sigma_{2}\right\},\left\{\rho_{1}, \rho_{2}\right\}$ and $\left\{\delta_{1}, \delta_{2}\right\}$ indicated in the figure.

2. Proofs of Theorem 3 and Corollary 1

Let K be a knot in $S^{3}, N(K)$ a regular neighborhood of K in S^{3} and $E(K)=\operatorname{cl}\left(S^{3}-N(K)\right)$ the exterior. Put $H_{1} \cup H_{2}$ be a Heegaard splitting of $E(K)$, where H_{1} is a compression body and H_{2} is a handlebody, i.e.,

Figure 3: The two unknotting tunnel systems in Case 1

Figure 4: The four unknotting tunnel systems in Case 2b
$\partial E(K) \subset \partial H_{1}$. We say that the Heegaard splitting $\left(H_{1}, H_{2}\right)$ is weakly reducible if there is an essential disk, say D_{i}, properly embedded in $H_{i}(i=1,2)$ such that $D_{1} \cap D_{2}=\emptyset$, and that $\left(H_{1}, H_{2}\right)$ is strongly irreducible if it is not weakly reducible. For the definition of compression body, we refer [1], and the notion of weak reducibility and strong irreducibility of Heegaard splittings is also due to [1].

Let V be a solid torus and K a knot in int V. Let $N_{V}(K)$ be a regular neighborhood of K in V and $E_{V}(K)=c l\left(V-N_{V}(K)\right)$ the exterior. We say that K is a tunnel number one knot in V if there is an arc γ properly embedded in $E_{V}(K)$ with $\gamma \cap \partial N_{V}(K) \neq \emptyset$ such that $\operatorname{cl}\left(E_{V}(K)-N\left(\partial N_{V}(K) \cup\right.\right.$ γ)) is a genus two handlebody (if $\gamma \cap \partial V \neq \emptyset$) or a genus two compression body (if $\partial \gamma \subset \partial N_{V}(K)$).

Proof of Theorem 3. Let $H_{1} \cup H_{2}=E(K)$ be a weakly reducible genus three Heegaard splitting with $\partial E(K)=\partial_{-} H_{1}$, and $D_{1} \subset H_{1}$ and $D_{2} \subset H_{2}$ be essential disks with $D_{1} \cap D_{2}=\emptyset$. Then we have the following three cases.

Case 1: Both D_{1} and D_{2} are non-separating in H_{1} and in H_{2} respectively.
Put $H_{1}^{\prime}=c l\left(H_{1}-N\left(D_{1}\right)\right), H_{2}^{\prime}=c l\left(H_{2}-N\left(D_{2}\right)\right)$, and put $V_{1}=c l\left(H_{1}^{\prime}-\right.$ $\left.N\left(\partial H_{1}^{\prime}-\partial E(K)\right)\right), V_{2}=N\left(\partial H_{1}^{\prime}-\partial E(K)\right) \cup N\left(D_{2}\right), W_{1}=N\left(\partial H_{2}^{\prime}\right) \cup N\left(D_{1}\right)$ and $W_{2}=\operatorname{cl}\left(H_{2}^{\prime}-N\left(\partial H_{2}^{\prime}\right)\right)$ as illustrated in Figure 5.

Figure 5: D_{1} and D_{2} are non-separating.
Put $T=V_{2} \cap W_{1}$. If T consists of two tori (the case when ∂D_{2} is separating
in ∂H_{1}^{\prime}), then each of the two tori is non-separating in S^{3}, a contradiction. Hence T is an incompressible torus in $E(K)$ and $\left(H_{1}, H_{2}\right)$ is an amalgamation of $\left(V_{1}, V_{2}\right)$ and $\left(W_{1}, W_{2}\right)$ via T. By the solid torus theorem, T is a boundary of a solid torus, say U, in the $S^{3}=E(K) \cup N(K)$, and $N(K)$ is contained in the sorid torus. Hence $W_{1} \cup W_{2}$ is a knot exterior of some tunnel number one knot in S^{3} because (W_{1}, W_{2}) is a genus two Heegaard splitting. In addition, $V_{1} \cup V_{2}$ is a knot extrior of some tunnel number one knot in the solid torus U because (V_{1}, V_{2}) is a genus two Heegaard splitting.

Case 2: Both D_{1} and D_{2} are separating in H_{1} and in H_{2} respectively. Let P_{i} be the once punctured torus bounded by ∂D_{i} in $\partial H_{i}(i=1,2)$. If $P_{1} \cap P_{2} \neq \emptyset$, then since $\partial D_{1} \cap \partial D_{2}=\emptyset$, we have $P_{1} \subset P_{2}$ or $P_{2} \subset P_{1}$. Then by some isotopy, we may assume that $P_{1}=P_{2}$ and $\partial D_{1}=\partial D_{2}$. Then $D_{1} \cup D_{2}$ is a 2 -sphere which bounds a 3 -ball in $E(K)$. Then the knot K is a trivial knot or a tunnel number one knot, and this is a contradiction.

Hence $P_{1} \cap P_{2}=\emptyset$. Let $T_{i}=P_{i} \cup D_{i}$ be a torus in $H_{i}(i=1,2)$. If T_{1} bounds a solid torus in H_{1}, then we can take a meridian disk in the solid torus, and we can take a meridian disk in the solid torus bounded by T_{2} in H_{2}. Then this case is reduced to Case 1 .

Suppose T_{1} bounds $S^{1} \times S^{1} \times[0,1]$, denoted by X, in H_{1}, and T_{2} bounds a solid torus Y in H_{2}. Put $H_{1}^{\prime}=c l\left(H_{1}-X\right), H_{2}^{\prime}=c l\left(H_{2}-Y\right)$, and put $V_{1}=\operatorname{cl}\left(H_{2}^{\prime}-N\left(\partial H_{2}^{\prime}\right)\right), V_{2}=N\left(\partial H_{2}^{\prime}\right) \cup X, W_{1}=N\left(\partial H_{1}^{\prime}\right) \cup Y$ and $W_{2}=$ $c l\left(H_{1}^{\prime}-N\left(\partial H_{1}^{\prime}\right)\right)$ as illustrated in Figure 6.

Then by the reason similar to the proof of Case I, we see that $W_{1} \cup W_{2}$ is a tunnel number one knot exterior in S^{3}, and $V_{1} \cup V_{2}$ is a tunnel number one knot exterior in a solid torus.

Case 3: One of D_{1} and D_{2} is separating and the other is non-separating.
Suppose D_{1} is separating in H_{1} and D_{2} is non-separating in H_{2}. Since $\partial D_{1} \cap \partial D_{2}=\emptyset$, we can take a loop ℓ in $\partial H_{1}=\partial H_{2}$ such that $\ell \cap \partial D_{1}=\emptyset$ and $\ell \cap \partial D_{2}$ is a single point. Take a regular neighborhood of $D_{2} \cup \ell$ in H_{2}, then it is a solid torus in H_{2} and let D_{2}^{\prime} be the frontier of the solid torus in H_{2}. Then D_{2}^{\prime} is a separating essential disk in H_{2} with $\partial D_{1} \cap \partial D_{2}^{\prime}=\emptyset$. Next suppose D_{1} is non-separating in H_{1} and D_{2} is separating in H_{2}. Then similarly as above, we can take a separating disk D_{1}^{\prime} in H_{1} with $\partial D_{1}^{\prime} \cap \partial D_{2}=\emptyset$. Hence Case 3 is reduced to Case 2, and this completes the proof of Theorem 3.

Proof of Corollary 1. Put $K=K_{1} \# K_{2}$ and suppose $E(K)$ has a genus three weakly reducible Heegaard splitting. Then by Theorem 3, there is an essential torus T in $E(K)$ which divides $E(K)$ into a tunnel number one knot

Figure 6: D_{1} and D_{2} are separating.
exterior $E\left(K_{1}^{\prime}\right)$ in S^{3} and a tunnel number one knot exterior $E_{V}\left(K_{2}^{\prime}\right)$ in a solid torus V.

Suppose T is a swallow follow torus of the connected sum. Then, since $t\left(K_{1}\right)=1$ and $t\left(K_{2}\right)=2, E\left(K_{1}\right)$ is homeomorphic to $E\left(K_{1}^{\prime}\right)$ and $E\left(K_{2}\right)$ is homeomorphic to $E_{V}\left(K_{2}^{\prime}\right) \cup V^{\prime}$ for some solid torus V^{\prime}. This shows that $E\left(K_{2}\right)$ has a genus two Heegaard splitting and $t\left(K_{2}\right)=1$. This is a contradiction, and T is not a swallow follow torus.

Let A be the decomposing annulus properly embedded in $E(K)$ corresponding to the connected sum of K.

First suppose $T \cap A=\emptyset$.
If $T \subset E\left(K_{1}\right)$, then since T is not a swallow follow torus, T is an essential torus in $E\left(K_{1}\right)$. But 2-bridge knot exterior contains no essential torus by [11]. This is a contradiction. If $T \subset E\left(K_{2}\right)$, then by the same reason as above, T is an essential torus in $E\left(K_{2}\right)$. But by [8, Theorem 1.2 and Lemma $1.3]$ or by [6, Proposition 2.1], this is a contradiction.

Hence $T \cap A \neq \emptyset$. Then, since we may assume that each component of $T \cap A$ is an essential loop in both T and A, we can take an essential annulus properly embedded in the 2-bridge knot exterior $E\left(K_{1}\right)$ whose boundary components are meridian loops. But this is a contradiction because 2-bridge
knots are prime. After all, these contradictions show that $E(K)$ has no genus three weakly reducible Heegaard splitting, and this completes the proof of Corollary 1.

3. Proof of Theorem 4

Put $K=K_{1} \# K_{2}$, and let $H_{1} \cup H_{2}=S^{3}$ be a genus three Heegaard splitting such that H_{1} contains a knot K as a central loop of a handle of H_{1}. Let S be a decomposing 2 -sphere of the connected sum $K_{1} \# K_{2}$. Then by [5], we may assume that $S \cap H_{1}$ consists of two non-separating disks D_{1}, D_{2} each of which intersects K in a single point and a non-separating annulus A. Similarly we may assume that $S \cap H_{2}$ consists of two non-separating annuli A_{1} and A_{2} (Figure 7).

Figure 7: Heegaard splitting $\left(H_{1}, H_{2}\right)$
Then, S splits H_{1} into two solid tori X_{1} and Y_{1} indicated in Figure 7, and S splits H_{2} into two genus two handlebodies X_{2} and Y_{2} indicated in Figure 7. Put $I_{1}=[0,1], I_{2}=[1,2], I_{3}=[2,3]$ and $I=I_{1} \cup I_{2} \cup I_{3}$. Let D_{x} (resp. D_{y}) be a disk and $\mathrm{P}_{x}\left(\right.$ resp. $\left.\mathrm{P}_{y}\right)$ be the central point of D_{x} (resp. D_{y}).

Put $B_{1}=X_{1} \cup_{\left(A=\partial D_{x} \times I_{2}\right)}\left(D_{x} \times I_{2}\right)$ and $B_{2}=X_{2} \cup_{\left(A_{1} \cup A_{2}\right)=\left(\partial D_{x} \times\left(I_{1} \cup I_{3}\right)\right)}$ $\left(D_{x} \times\left(I_{1} \cup I_{3}\right)\right)$. Then, since A and $A_{1} \cup A_{2}$ are primitive annuli in ∂X_{1} and in ∂X_{2} respectively, B_{1} and B_{2} are two 3-balls and (B_{1}, B_{2}) gives a 2bridge decomposition of the knot $K_{1}=\left(B_{1} \cap K\right) \cup\left(\mathrm{P}_{x} \times I\right)$ in the 3 -sphere $B_{1} \cup B_{2}$ (Figure 8). On the other hand, put $C_{1}=Y_{1} \cup_{\left(A=\partial D_{y} \times I_{2}\right)}\left(D_{y} \times I_{2}\right)$ and $C_{2}=Y_{2} \cup_{\left(A_{1} \cup A_{2}\right)=\left(\partial D_{y} \times\left(I_{1} \cup I_{3}\right)\right)}\left(D_{y} \times\left(I_{1} \cup I_{3}\right)\right)$. Then, the arguments in the proof of the main theorem of [5] show that both C_{1} and C_{2} are 3-balls, and $\left(C_{1}, C_{2}\right)$ gives a 2-string essential free tangle decomposition of the knot $K_{2}=\left(C_{1} \cap K\right) \cup\left(\mathrm{P}_{y} \times I\right)$ in the 3 -sphere $C_{1} \cup C_{2}$. We note that $\mathrm{P}_{x} \times I_{2}$ is an unknotted component in C_{1} (Figure 8).

Figure 8: Tangle decompositions $\left(B_{1}, B_{2}\right)$ and $\left(C_{1}, C_{2}\right)$
By the above arguments, we can see that any genus three Heegaard splitting of $E(K)$ is obtained from a 2-bridge decomposition of K_{1} and a 2-string essential free tangle decomposition of K_{2} by gluing $\partial\left(D_{x} \times I\right)=\partial\left(X_{1} \cup X_{2}\right)$ and $\partial\left(D_{y} \times I\right)=\partial\left(Y_{1} \cup Y_{2}\right)$. Then, by the uniqueness of prime decomposition of knots ([9]), by the uniqueness of 2-bridge decomposition ([10]), and by the uniqueness of 2 -string essential free tangle decomposition ([8]), we have at most four choices of genus three Heegaard splittings up to homeomorphism, i.e., exchanging of B_{1} and B_{2} and exchanging of C_{1} and C_{2}. See (i) $\sim(i v)$ of Figure 9. We note that $X_{1}^{\prime}, X_{2}^{\prime}, Y_{1}^{\prime}$ and Y_{2}^{\prime} in Figure 9 are the other components of Heegaard splittings of $E(K)$ (c.f. Figure 10). Then, by $2 \times 2=4$, we complete the proof of Theorem 4.

4. Proof of Theorem 5

As we saw the proof of Theorem 4, genus three Heegaard splittings of $E(K)$ are dependent on the choice of 2-bridge decomposition of K_{1} and free tangle decomposition of K_{2}.

Suppose we are in Case 1. Then, since C_{2} contains no unknotted component, we have two Heegaard splittings $\left(H_{1}, H_{2}\right)$ and $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ such that $H_{1}=X_{1} \cup Y_{1}, H_{2}=X_{2} \cup Y_{2}, H_{1}^{\prime}=X_{1}^{\prime} \cup Y_{1}, H_{2}^{\prime}=X_{2}^{\prime} \cup Y_{2}$, where $\left(X_{1}, X_{2}\right)$ corresponds to $\left(B_{1}, B_{2}\right),\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ corresponds to $\left(B_{2}, B_{1}\right)$ and $\left(Y_{1}, Y_{2}\right)$ corresponds to (C_{1}, C_{2}). See (i) and (ii) of Figures 9 and 10.

If $\beta \equiv \pm 1(\bmod \alpha)$, then by [7, Theorem 5.2] there is an isotopy of $S^{3}=B_{1} \cup B_{2}$ which sends B_{1} to B_{2} and leaves K_{1} invariant. This implies that X_{1}^{\prime} is isotopic to X_{1} and X_{2}^{\prime} is isotopic to X_{2}. Thus $\left(H_{1}, H_{2}\right)$ is isotopic to ($H_{1}^{\prime}, H_{2}^{\prime}$) and we have $n=1$.

Suppose $\beta \not \equiv \pm 1(\bmod \alpha)$, and suppose $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ is homeomorphic to $\left(H_{1}, H_{2}\right)$. Then the homeomorphism between $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ and $\left(H_{1}, H_{2}\right)$ takes

Figure 9: Four combinations
$\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ to $\left(X_{1}, X_{2}\right)$, and this homeomorphism induces a self-homeomorphism of $S^{3}=B_{1} \cup B_{2}$ which exchanges B_{1} and B_{2} and leaves K_{1} invariant. Then, since $\beta \not \equiv \pm 1(\bmod \alpha)$ and by [7, Theorem 5.2], this homeomorphism reverses the orientation of the 2-bridge knot K_{1}, and this shows that the homeomorphism between $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ and $\left(H_{1}, H_{2}\right)$ exchanges A_{1} and A_{2}. This means that there is a self-homeomorphism of Y_{2} which exchanges A_{1} and A_{2}.

Let a_{1} and a_{2} be the central loops of A_{1} and A_{2} respectively. Then we can regard $\left(Y_{2}, a_{1} \cup a_{2}\right)$ is a genus two Heegaard diagram of S^{3} because Y_{2} is a complementary space of a 2 -string free tangle and a_{1} and a_{2} are the central loops of the 2 -handles. Then, by taking a complete meridian disk system of the genus two handlebody Y_{2}, we have $\pi_{1}\left(Y_{2}\right) \cong<x, y \mid->$, where x and y correspond to those meridian disks. Then by a_{1} and a_{2}, we have words w_{1} and w_{2} in the letters x and y, and we have $\pi_{1}\left(S^{3}\right) \cong<x, y \mid w_{1}, w_{2}>$. Then, by [2], the representation of $\pi_{1}\left(S^{3}\right)$ can be deformed into a standard one by a sequence of mutual substitutions. However, this is impossible because w_{1} and w_{2} have the same lengths by the existence of a self-homeomorphism of Y_{2} exchanging a_{1} and a_{2}. This contradiction shows that $\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$ is not

Figure 10: Four Heegaard splittings
homeomorphic to $\left(H_{1}, H_{2}\right)$, and shows that $n=2$.
Next, suppose we are in Case 2. In this case, since C_{2} also has an unknotted component, We have four Heegaard splittings $\left(H_{1}, H_{2}\right),\left(H_{1}^{\prime}, H_{2}^{\prime}\right)$, $\left(H_{1}^{\prime \prime}, H_{2}^{\prime \prime}\right)$ and $\left(H_{1}^{\prime \prime \prime}, H_{2}^{\prime \prime \prime}\right)$ such that $H_{1}=X_{1} \cup Y_{1}, H_{2}=X_{2} \cup Y_{2}, H_{1}^{\prime}=X_{1}^{\prime} \cup Y_{1}$, $H_{2}^{\prime}=X_{2}^{\prime} \cup Y_{2}, H_{1}^{\prime \prime}=X_{1} \cup Y_{1}^{\prime}, H_{2}^{\prime \prime}=X_{2} \cup Y_{2}^{\prime}$ and $H_{1}^{\prime \prime \prime}=X_{1}^{\prime} \cup Y_{1}^{\prime}, H_{2}^{\prime \prime \prime}=X_{2}^{\prime} \cup Y_{2}^{\prime}$, where (X_{1}, X_{2}) corresponds to $\left(B_{1}, B_{2}\right)$ and ($X_{1}^{\prime}, X_{2}^{\prime}$) corresponds to (B_{2}, B_{1}), $\left(Y_{1}, Y_{2}\right)$ corresponds to $\left(C_{1}, C_{2}\right)$ and $\left(Y_{1}^{\prime}, Y_{2}^{\prime}\right)$ corresponds to (C_{2}, C_{1}). See (i), (ii), (iii) and (iv) of Figures 9 and 10.

If we are in Case 2b, then, since there is no homeomorphism exchanging C_{1} and C_{2}, the situation is similar to Case 1 and we see that (iii) and (iv) are not homeomorphic to (i) or (ii). This shows that $n=2$ if $\beta \equiv \pm 1(\bmod \alpha)$ and $n=4$ if $\beta \not \equiv \pm 1(\bmod \alpha)$.

Suppose we are in Case 2a. Then, since there is a homeomorphism exchanging C_{1} and C_{2}, we have a homeomorphism which takes $Y_{1}^{\prime} \cup Y_{2}^{\prime}$ to $Y_{1} \cup Y_{2}$ leaving $Y_{1} \cap K=Y_{1}^{\prime} \cap K$ invariant. This homeomorphism induces a self-homeomorphism on $A_{1} \cup A_{2}$ and on $A \cup D_{1} \cup D_{2}$. Then, since any 2-bridge knot is strongly invertible, this homeomorphism extends to a homeomorphism from $X_{1}^{\prime} \cup X_{2}^{\prime}$ to $X_{1} \cup X_{2}$ which leaves $X_{1} \cap K=X_{1}^{\prime} \cap K$ invariant. Thus, this case is reduced to Case 1 , and we have $n=1$ if $\beta \equiv \pm 1(\bmod \alpha)$ and $n=2$ if $\beta \not \equiv \pm 1(\bmod \alpha)$. This completes the proof of Theorem 5 .

5. Unknotting tunnel systems

In the present section, we will describe the unknotting tunnel systems corresponding to those Heegaard splittings of Theorem 5. Recall the Heegaard splitting $\left(H_{1}, H_{2}\right)$ and consider the unknotting tunnel system $\left\{\tau_{1}, \tau_{2}\right\}$ in H_{1} as in Figure 11. Then τ_{1} is divided by S into two $\operatorname{arcs} \tau_{1}^{\prime} \cup \tau_{1}^{\prime \prime}$. Then τ_{1}^{\prime} is an upper or a lower tunnel of the 2-bridge knot $K_{1}, \tau_{1}^{\prime \prime}$ is an arc in C_{1} connecting $K_{2} \cap C_{1}$ and A, and τ_{2} is a core loop of the solid torus Y_{1} together with a sub-arc of K_{2}. Then, by applying these situations to the knots K_{1} and K_{2} as illustrated in Figures 3 and 4, we have those unknotting tunnel systems illustrated in Figures 3 and 4. In fact, by the deformation (i) \sim (iv) as in Figure 12, we see that τ_{2} is in the position of Figure 3.

At the end of the present paper, we put the following problem:
Problem Classify the genus three Heegaard splittings of $E\left(K_{1} \# K_{2}\right)$ up to isotopy.

Figure 11: Heegaard splitting and unknotting tunnel system

Figure 12: Deformation of τ_{2}

References

[1] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), 275-283.
[2] T. Kaneto, On genus 2 Heegaard diagram for the 3 -sphere, Trans. A. M. S., 276 (1983), 583-597.
[3] Y. Moriah, Connected sums of knots and weakly reducible Heegaard splittings, Topology Appl. 141 (2004), 1-20.
[4] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. A. M. S., 123 (1995), 3527-3532.
[5] K. Morimoto, Charaterization of tunnel number two knots which have the property " $2+1=2$ ", Topology Appl. 64 (1995), 165-176
[6] K. Morimoto, Essntial tori in 3-string free tangle decmpositions of knots, Journal of Knot Theory and its Ramifications, 15 (2006), 1357-1362.
[7] K. Morimoto and M. Sakuma, On unknotting tunnels for knots, Mathematische Annalen, 289 (1991), 143-167.
[8] M. Ozawa, On uniqueness of essential tangle decompositions of knots with free tangle decompositions, Proc. Appl. Math. Workshop 8, ed G.T.Jin and K.H.Ko, KAIST, Taejon (1998)
[9] H. Schubert, Die eindeutige Zerlegbarkeit eines Knoten in Primknoten, Sitzungsber. Akad. Wiss. Hidelberg, math.-nat. KI. 3 (1949) Abh: 57104.
[10] H. Schubert, Knoten mit zwei Brucken, Math. Z. 65 (1956), 133-170.
[11] H. Schubert, Ü ber eine numerische Knoteninvariante, Math. Z. 61 (1954), 245-288.

