2-Component links with genus two Heegaard splittings

Kanji Morimoto
Department of IS and Mathematics, Konan University, Okamoto 8-9-1, Higashi-Nada, Kobe 658-8501, Japan morimoto@konan-u.ac.jp

Received 2 November 2017
Revised 26 November 2018
Accepted 29 March 2019
Published 24 May 2019

Dedicated to Ms. Akiko Onishi for her 76th birthday

Abstract

In the present paper, we consider two types of 2-component links with genus two Heegaard splittings. One of them is an ordinary tunnel number one link, and the other is a somewhat different tunnel number one link. We will try to detect the differences between those two types. In fact, we will characterize composite tunnel number one links of the second type, and tunnel number one links of the second type with essential tori.

Keywords: Genus two Heegaard splittings; tunnel number one links; connected sum; composite; essential tori; essential tangle decompositions.

Mathematics Subject Classification 2010: 57M25, 57M27

1. Introduction

Let K be a knot in S^{3}. Then, we say that K is tunnel number one if K is a nontrivial knot and there is a genus two Heegaard splitting $\left(V_{1}, V_{2}\right)$ of S^{3} such that K is a core of a handle of V_{1} or of V_{2}.

Next, let $L=K_{1} \cup K_{2}$ be a 2-component link in S^{3}, and let $N(L)=N\left(K_{1}\right) \cup$ $N\left(K_{2}\right)$ be a regular neighborhood of L in S^{3} and $E(L)=c l\left(S^{3}-N(L)\right)$ the exterior. Then $\partial E(L)=\partial N\left(K_{1}\right) \cup \partial N\left(K_{2}\right)$ is two tori. Suppose $E(L)$ has a genus two Heegaard splitting $E(L)=C_{1} \cup C_{2}$, where $C_{i}(i=1,2)$ is a genus two handlebody or a genus two compression body. Then, we have the following two cases: one of them is that $\partial E(L)$ is contained in ∂C_{1} or in ∂C_{2}, and the other is that, by changing the letters if necessary, $\partial N\left(K_{1}\right)\left(\partial N\left(K_{2}\right)\right.$ respectively $)$ is contained in $\partial C_{1}\left(\partial C_{2}\right.$ respectively).

So far, we say that L is tunnel number one if the former case occurs, and it seems that the latter case has not been much studied. See [3, 11, 2] for example. In knot case, there are no such ambiguities, but in link case, we need to consider the
differences between these two cases. In the present paper, we study these two cases and try to detect the differences. So we will define the two types of tunnel number one links as follows.

We say that L is a tunnel number one link of type I if there is an arc γ in S^{3} such that $L \cap \gamma=\partial \gamma, \gamma$ connects K_{1} and K_{2} and the exterior $E\left(K_{1} \cup \gamma \cup K_{2}\right)$ is a genus two handlebody (Fig. \mathbb{I} (a)), and that L is a tunnel number one link of type II if there is an arc γ in S^{3} such that, by changing the letters if necessary, $L \cap \gamma=K_{1} \cap \gamma=\partial \gamma$ and the exterior $E\left(K_{1} \cup \gamma\right)$ is a genus two handlebody containing K_{2} as a core of a handle (Fig. [1(b)).

In case of type I we call γ an unknotting tunnel of type I, and in case of type II we call γ an unknotting tunnel of type II. Put $V_{1}=N\left(K_{1} \cup \gamma \cup K_{2}\right)$ and $V_{2}=\operatorname{cl}\left(S^{3}-V_{1}\right)$ in case of type I, and put $V_{1}=N\left(K_{1} \cup \gamma\right)$ and $V_{2}=\operatorname{cl}\left(S^{3}-V_{1}\right)$ in case of type II. Then in both cases, $\left(V_{1}, V_{2}\right)$ is a genus two Heegaard splitting of S^{3} as in Fig. 1

On inclusion relations of type I and type II, Ishihara showed in [6 the following:
Theorem 1 ([6, A part of Theorems 1.4, 1.5]). (1) There are infinitely many tunnel number one links of type I not of type II. (2) There are infinitely many tunnel number one links of type II not of type I.

By this theorem, we see that two families of tunnel number one links of type I and of type II are independent. Of course the intersection of these two families is not empty. For example, 2-bridge links are tunnel number one links of both types. In the present paper we characterize tunnel number one links of type II with some conditions.

First, we consider composite tunnel number one links. We say that a knot K is a 2-bridge knot if K is a non-trivial knot and there is a genus zero Heegaard splitting (B_{1}, B_{2}) of S^{3} such that $K \cap B_{i}$ is a 2 -string trivial arc system properly

Fig. 1. Heegaard splittings and unknotting tunnels.
embedded in $B_{i}(i=1,2)$, and that a knot K is a (1, 1)-knot if K is a non-trivial knot and there is a genus one Heegaard splitting $\left(V_{1}, V_{2}\right)$ of S^{3} such that $K \cap V_{i}$ is a trivial arc properly embedded in $V_{i}(i=1,2)$. We call the decomposition a (1, 1)-decomposition. In [11, we characterized composite tunnel number one links of type I as follows:

Theorem 2 (11, Theorem 1]). Let L be a tunnel number one link of type I. Then, L is composite if and only if L is a connected sum of a 2-bridge knot and a Hopf link.

In Sec. 2 we will characterize composite tunnel number one links of type II as follows:

Theorem 3. Let L be a tunnel number one link of type II. Then, L is composite if and only if L is a connected sum of a $(1,1)$-knot and a Hopf link.

By these two theorems and the fact that 2-bridge knots are (1, 1)-knots, we see that the family of composite tunnel number one links of type I is properly contained in the family of composite tunnel number one links of type II, and that the difference is corresponding to the difference between 2 -bridge knots and (1,1)-knots.

Next, we consider tunnel number one links with essential tori, where a torus in the link exterior is essential if the torus is incompressible and is not ∂-parallel. Let $K_{1} \cup K_{2}$ be a 2-bridge link not a Hopf link or a trivial link. Since K_{2} is a trivial knot, $E\left(K_{2}\right)$ is a solid torus with $K_{1} \subset E\left(K_{2}\right)$. Let $T(p, q)$ be a torus knot of type (p, q) for some relatively prime integers p, q with $|p|>1$ and $|q|>1$, and let $N(p, q)$ be a regular neighborhood of $T(p, q)$ and $E(p, q)=\operatorname{cl}\left(S^{3}-N(p, q)\right)$ the exterior. Then, $E(p, q)$ is a Seifert fibered space over a disk with two exceptional points $D(-r / p, s / q)$ with $p s-q r=1$. Let m be a longitude of the solid torus $E\left(K_{2}\right)$ in $\partial E\left(K_{2}\right)$ which is a meridian of K_{2}, and ℓ a regular fiber of $D(-r / p, s / q)$ in $\partial E(p, q)$, then we have an orientation preserving homeomorphism $f: E\left(K_{2}\right) \rightarrow N(p, q)$ with $f(m)=\ell$. Then we have a knot $f\left(K_{1}\right) \subset f\left(E\left(K_{2}\right)\right)=N(p, q) \subset S^{3}$ and call $f\left(K_{1}\right)$ an MS-knot. Then since $K_{1} \cup K_{2}$ is not a Hopf link or a trivial link and since $T(p, q)$ is a non-trivial torus knot, MS-knot contains an essential torus in the exterior. Then in [11] we showed the following:

Theorem 4 ([12, Theorem A]). Let K be a tunnel number one knot. Then, K has an essential torus in the exterior if and only if K is an MS-knot.

For link version, we need to extend the definition of MS-knots as follows:
Let p, q be integers with $|p|=1,|q|>1$ or $|p|>1,|q|=1$, and let $E(p, q)$ be the exterior of the torus knot $T(p, q)$. In this case, $T(p, q)$ is a trivial knot and $E(p, q)$ is a solid torus. Then by the same way as above, we can define the knot $f\left(K_{1}\right)$ called an extended MS-knot and denoted by EMS-knot. Since $E(p, q)$ is a solid torus, EMS-knots do not have essential tori in the exteriors. However, the union of an EMS-knot and a regular fiber of $D(-r / p, s / q)$ is a link with an essential torus
in the exterior since $|q|>1$ or $|p|>1$. Then as a link version of the above theorem, Eudave-Muñoz and Uchida showed the following:

Theorem 5 ([2, Theorems 1, 2]). Let L be a tunnel number one link of type I. Then L has an essential torus in the exterior if and only if one of the following holds:
$C(1): L$ is a connected sum of a 2-bridge knot and a Hopf link,
$C(2): L$ is a union of an MS-knot and an exceptional fiber of the Seifert fibered space $D(-r / p, s / q)$, where $|p|>1$ and $|q|>1$,
$C(3): L$ is a union of an EMS-knot and a regular fiber of the Seifert fibered space $D(-r / p, s / q)$, where $|p|=1,|q|>1$ or $|p|>1,|q|=1$.

Remark. In [2], tunnel number one links of type I with essential annuli have been classified. In fact, they noted in [2] that a tunnel number one link of type I with essential tori has essential annuli. Therefore, to state the above theorem, we need to pick up links with essential tori from [2, Theorems 1, 2, Then [2, Theorem (1) (i)], [2] Theorem [2(i)] and a subfamily of [2] Theorem [2(ii)] are all links we need. The situation has been stated in the note after the proof of 2, Theorem 2.

In Sec. 3 we will characterize tunnel number one links of type II with essential tori. Let's consider a 3-bridge link $K_{1} \cup K_{2} \cup K_{3}$ with the following conditions:
(i) $K_{1} \cup K_{2}$ is a Hopf link,
(ii) both $K_{1} \cup K_{3}$ and $K_{2} \cup K_{3}$ are non-trivial 2-bridge links.

Then, since K_{3} is a trivial knot, $E\left(K_{3}\right)$ is a solid torus with $K_{1} \cup K_{2} \subset E\left(K_{3}\right)$. Let m be a longitude of the solid torus $E\left(K_{3}\right)$ in $\partial E\left(K_{3}\right)$ which is a meridian of K_{3}, and let $T(p, q), N(p, q), E(p, q)$ and ℓ be as above, where $|p|>1$ and $|q|>1$. Then, we have an orientation preserving homeomorphism $f: E\left(K_{3}\right) \rightarrow N(p, q)$ with $f(m)=\ell$. Then we have a link $f\left(K_{1} \cup K_{2}\right) \subset f\left(E\left(K_{3}\right)\right)=N(p, q) \subset S^{3}$ and call $L=f\left(K_{1} \cup K_{2}\right)$ an MS-link. Then by the above condition (ii) and that $T(p, q)$ is a non-trivial knot, MS-link contains an essential torus in the exterior, and is not a composite link. The link illustrated in Fig. 2 is an example of an MS-link.

Fig. 2. MS-link.

Let K be a tunnel number one knot, and let $\left(V_{1}, V_{2}\right)$ be a genus two Heegaard splitting such that V_{1} contains K as a core of a handle. Then, K is isotopic to a loop in ∂V_{1}, and we denote the loop by the same notation K. Then, K is a loop in ∂V_{2} too. Suppose K is primitive in V_{2}, i.e. K is isotopic to a core of a handle of V_{2}. According to [9] we call such a knot doubly primitive knot. Let A be an annulus in $\partial V_{1}=\partial V_{2}$ such that a component of ∂A is K, and put $K^{\prime}=\partial A-K$. Then, we call the 2-component link $K \cup K^{\prime}$ in S^{3} a DP-link.

Then, we show the following:
Theorem 6. Let L be a tunnel number one link of type II. Then, L has an essential torus in the exterior if and only if one of the following holds:
$C(1): L$ is a connected sum of a $(1,1)$-knot and a Hopf link,
$C(2): L$ is a union of an MS-knot and an exceptional fiber of the Seifert fibered space $D(-r / p, s / q)$, where $|p|>1$ and $|q|>1$,
$C(3): L$ is a union of an EMS-knot and a regular fiber of the Seifert fibered space $D(-r / p, s / q)$, where $|p|=1,|q|>1$ or $|p|>1,|q|=1$,
$C(4): L$ is an MS-link
$C(5): L$ is a DP-link.
By these two theorems, we see that the family of tunnel number one links of type I with essential tori is properly contained in the family of tunnel number one links of type II with essential tori. In fact, $C(2) \cup C(3)$ and $C(4) \cup C(5)$ are disjoint, because two components of the links in $C(2) \cup C(3)$ are separated by the essential tori, but two components of the links in $C(4) \cup C(5)$ are in one side of the essential tori.

Finally, we consider tunnel number one links with essential tangle decompositions. We say that a link L has an n-string essential tangle decomposition for $n>0$ if there is a genus zero Heegaard splitting $\left(B_{1}, B_{2}\right)$ of S^{3} such that $\left(B_{i}, L \cap B_{i}\right)$ is an n-string essential tangle for both $i=1,2$, where $\left(B_{i}, L \cap B_{i}\right)$ is essential if $\partial B_{i}-L$ is incompressible in $B_{i}-L$ for $n>1$ and $L \cap B_{i}$ is not a trivial arc in B_{i} for $n=1$. Then Gordon and Reid showed in [3] the following:

Theorem 7 ([3, A part of Theorem 1.5]). If a tunnel number one link L of type I has an essential tangle decomposition, then at least one of the two components of L is a trivial knot.

On tangle decompositions of tunnel number one links of type II, Ishihara showed in [6] that 2-component Montesinos link $M\left(b ; \frac{a_{1}}{b_{1}}, \frac{1}{2}, \frac{a_{2}}{b_{2}}, \frac{1}{2}\right)$ is a tunnel number one link of type II not of type I, where $\left(a_{i}, b_{i}\right)$ is a pair of relatively prime integers for $i=1,2$ with $\left|b_{i}\right|>1$. Then, we see that this link has a 2 -string essential tangle decomposition, and that both components of this link are 2-bridge knots.

In Sec. [4 we will show that there are infinitely many tunnel number one links of type II not of type I with n-string essential tangle decomposition for any $n>0$, each of which consists of a 2-bridge knot and a (1, 1)-knot.

We note that Ishihara showed in [6] that if a tunnel number one link of type I has a trivial component then it is of type II too ([6, Theorem 1.7]). Thus by combining these theorems and examples, we see that the family of tunnel number one links of type I with essential tangle decompositions is properly contained in the family of tunnel number one links of type II with essential tangle decompositions.

So far, we have considered tunnel number one links with three conditions : composite, with essential tori and with essential tangle decompositions, and have seen the differences between tunnel number one links of type I and of type II. Although Theorem $\square_{\text {says that there are infinitely many tunnel number one links }}$ of type I not of type II, we cannot get concrete examples of such links yet. So we set up the following problems at the end of Introduction.

Problems

(1) Construct concrete examples of tunnel number one links of type I not of type II.
(2) Show the type II version of Gordon-Reid's theorem (Theorem 7 above).

In the present paper, for standard terms and definitions in knot theory and 3 -manifold topology, we refer to [5, 7, 14].

2. Proof of Theorem 3

Let $L=K_{1} \cup K_{2}$ be a composite tunnel number one link of type II, and let S be a decomposing 2 -sphere with $S \cap K_{1}=$ two points and $S \cap K_{2}=\emptyset$. Let γ be an unknotting tunnel of type II of L with $K_{1} \cap \gamma=\partial \gamma$. Put $V_{1}=N\left(K_{1} \cup \gamma\right)$ and $V_{2}=\operatorname{cl}\left(S^{3}-V_{1}\right)$, then $\left(V_{1}, V_{2}\right)$ is a genus two Heegaard splitting of S^{3} as illustrated in Fig. (b).

By $S \cap K_{1}=$ two points, we may assume that $S \cap V_{1}=D_{1}^{*} \cup D_{2}^{*} \cup D_{1} \cup D_{2} \cup$ $\cdots \cup D_{n}$, where $D_{i}^{*}(i=1,2)$ is a meridian disk with $D_{i}^{*} \cap K_{1}=$ one point and $D_{j}(j=1,2, \ldots n)$ is a disk properly embedded in V_{1} not ∂-parallel as illustrated in Fig. 3.

Put $P=S \cap V_{2}$, then P is a planar surface properly embedded in V_{2} with $n+2$ boundary components. Suppose n is minimal among all such decomposing

Fig. 3. $S \cap V_{1}$.

2-spheres. Then, we may assume that P is incompressible in $V_{2}-K_{2}$. Let E be a meridian disk of V_{2} with $E \cap K_{2}=\emptyset$, and suppose $n>0$. Then, since ∂P consists of $n+2(>2)$ components, $P \cap E \neq \emptyset$ and we may assume that each component of $P \cap E$ is an arc properly embedded in both P and E.

Let α be an outermost arc component of $P \cap E$ in E, and let Δ be the corresponding outer most disk. Then we can perform a boundary compression of P at α along Δ from V_{2} to V_{1}, and we get a band, say b, in V_{1}.

Suppose b connects two different disks. If b connects D_{1}^{*} and D_{2}^{*}, then one of the two subarcs of K_{1} cut off by $D_{1}^{*} \cup D_{2}^{*}$ is parallel into the disk $D_{1}^{*} \cup b_{1} \cup D_{2}^{*}$. This means that one of the connected sum summands of L is a trivial knot. Thus, at least one of the two disks b connects is a disk D_{i} for some i. Then we can reduce the number of the components of $S \cap V_{1}$, and this contradicts the minimality of n.

Thus, b meets a single disk and α meets a single component of ∂P. If α cuts off a disk from P, then by standard cut and paste arguments, we can retake a meridian disk E with fewer components of $E \cap P$. Hence, α is an essential arc properly embedded in P. By this observation, we see that each component of $\partial\left(b \cup D_{i}\right)$ for some i is an essential loop in ∂V_{1}.

Suppose there is a non-separating disk in $D_{1} \cup D_{2} \cup \cdots \cup D_{n}$. Then, since each component of $V_{1}-\left(D_{1}^{*} \cup D_{2}^{*} \cup D_{1} \cup D_{2} \cup \cdots \cup D_{n}\right)$ is a 3-ball, $b \cup D_{i}$ is a compressible annulus in V_{1}. Then, by performing a surgery along the compressing disk for $b \cup D_{i}$, we get a decomposing 2 -sphere intersecting V_{1} in fewer essential disks than n. This contradicts the minimality of n.

Thus $D_{1} \cup D_{2} \cup \cdots \cup D_{n}$ are all mutually parallel separating disks. Then, we may assume that b meets the separating disk D_{n} and $b \cup D_{n}$ is an incompressible annulus as in Fig. Q 6

Suppose b winds around a handle of $V_{1} p$ times for some $p>1$. Then, since $c l\left(S-\left(D_{n} \cup b\right)\right)$ consists of two disks, the union of the solid torus cut off by $D_{n} \cup b$ and one of the two disks shows that S^{3} contains a lens space summand of the order p. Hence, $p=1$, and the annulus $D_{n} \cup b$ is a ∂-parallel annulus. Then, we can reduce the number of the components of $S \cap V_{1}$, and this contradicts the minimality

Fig. 4. $\quad D_{n} \cup b$.

Fig. 5. $\left(V_{1} \cup V_{2}\right) \rightarrow\left(W_{1} \cup W_{2}\right)$.
of n. After all, we have $n=0$ and $S \cap V_{1}=D_{1}^{*} \cup D_{2}^{*}$. Thus, by [8, Lemma 3.2], $S \cap V_{2}$ is a separating annulus consisting of a separating disk and a band winding around a handle containing K_{2} exactly once as in Fig. [5(a).

Let R be the 3 -ball in V_{1} cut off by $D_{1}^{*} \cup D_{2}^{*}$ indicated in Fig. 5 (a). Put $W_{1}=$ $c l\left(V_{1}-R\right)$ and $W_{2}=V_{2} \cup R$ as in Fig. 5 (b). Then W_{1} is a solid torus, and since the annulus $S \cap V_{2}$ winds around a handle containing K_{2} once, W_{2} is a solid torus too. Then, since $W_{1} \cap K_{1}$ is a trivial arc in W_{1} and $W_{2} \cap K_{1}$ is a trivial arc in W_{2}, K_{1} has a (1, 1)-decomposition. Moreover, K_{2} is a trivial loop in W_{2} bounding a disk intersecting K_{1} in a single point. This shows that L is a connected sum of a (1,1)-knot and a Hopf link.

On the other hand, the converse is proved by tracing back the above arguments, and this completes the proof of Theorem 3.

3. Proof of Theorem 6

Before the proof of Theorem [6] we prepare the following lemma:
Lemma 8. Let $K_{1} \cup K_{2} \cup K_{3}$ be a 3-component link with the following conditions:
(i) there is a genus one Heegaard splitting $\left(V_{1}, V_{2}\right)$ of S^{3} such that K_{i} is a core of $V_{i}(i=1,2)$,
(ii) K_{3} is a trivial knot,
(iii) K_{3} intersects V_{i} in a trivial arc and there is a trivializing disk Δ_{i} for $K_{3} \cap V_{i}$ with $\Delta_{i} \cap K_{i}=\emptyset(i=1,2)$ as in Fig. 6.

Then, $K_{1} \cup K_{2}$ is a Hopf link and $K_{1} \cup K_{2} \cup K_{3}$ is a 3-bridge link.

Proof. By the condition (i), it is clear that $K_{1} \cup K_{2}$ is a Hopf link.

Fig. 6. $K_{1} \cup K_{2} \cup K_{3}$.

Claim We can take a meridian disk $D_{i}(i=1,2)$ of V_{i} so that $D_{i} \cap K_{i}$ is a single point, $D_{i} \cap K_{3}=\emptyset$ and $\partial D_{1} \cap \partial D_{2}$ is a single point.

Proof of Claim. Let γ be a "straight arc" connecting K_{1} and $K_{3} \cap V_{1}$ in V_{1} as in Fig. 6 and put $\Gamma=K_{1} \cup \gamma \cup\left(K_{3} \cap V_{1}\right)$. Then, we can regard V_{1} as a thin regular neighborhood of the graph Γ.

Let D be a disk with $\partial D=K_{3}$ by the triviality of K_{3}. Then by considering intersections $D \cap \Gamma$, we can put $D \cap V_{1}=E_{0} \cup E_{1} \cup \cdots \cup E_{m} \cup F_{1} \cup \cdots \cup F_{k}$, where E_{0} is a disk with $\partial E_{0}=\left(K_{3} \cap V_{1}\right) \cup\left(\right.$ an arc in $\left.\partial V_{1}\right), E_{i}(i=1,2, \ldots, m)$ is a meridian disk of V_{1} intersecting K_{1} in a single point and $F_{j}(j=1,2, \ldots k)$ is a disk intersecting γ in a single point (see Fig. $\bar{Z}(\mathrm{a})$ or $\boldsymbol{Z}(\mathrm{b})$). In this situation, we may assume that $m+k$ is minimal among all such disks. If $V_{1} \cap D=E_{0}$, then $D \cap V_{2}$ is a single disk too, and by using these disks we can take the required meridian disks. So we may assume that $m>0$ or $k>0$.

Put $P=V_{2} \cap D=\operatorname{cl}\left(D-\left(E_{0} \cup E_{1} \cup \cdots \cup E_{m}\right)-\left(F_{1} \cup \cdots \cup F_{k}\right)\right)$. Then P is a planar surface such that $\partial P=\left(K_{3} \cap V_{2}\right) \cup\left(E_{0} \cap \partial V_{2}\right) \cup \partial\left(E_{1} \cup \cdots \cup E_{m}\right) \cup \partial\left(F_{1} \cup \cdots \cup F_{k}\right)$, where $\partial E_{i}(i=1,2, \ldots, m)$ is a longitude of V_{2}. Let G be a meridian disk of V_{2}. Then, by the existence of Δ_{2}, we may assume that $G \cap K_{3}=\emptyset, G \cap K_{2}=$ a single point.

Suppose $m=0$. Then $k>0$ because $m>0$ or $k>0$. If $G \cap P=\emptyset$, then ∂G is a longitude in ∂V_{1} not intersecting $D \cap \partial V_{1}$. Let R be a disk in ∂V_{1} bounded by ∂F_{k}, then we have $D \cap \partial V_{1} \subset R$ and $R \cap \partial G=\emptyset$. Then, we can take a meridian disk H

Fig. 7. $D \cap V_{1}$.
in V_{1} such that $H \cap K_{1}=$ a single point and $\partial H \cap \partial G=$ a single point. Moreover we may assume that $H \cap K_{3}=\emptyset$ because we can take H so that $H \cap R=\emptyset$. Then, G and H are the required meridian disks.

Hence, we may assume that $G \cap P \neq \emptyset$ and that each component of $G \cap P$ is a loop or an arc properly embedded in G. Suppose there is a loop component, say ℓ, in $G \cap P$, and let G_{1} be a disk in G with $\partial G_{1}=\ell$. Since ℓ is a loop in D, ℓ bounds a disk in D. Then, by standard cut and paste arguments, we can retake the disk D to eliminate the intersection loop ℓ. Hence, we may assume that each component of $G \cap P$ is an arc properly embedded in G. Then, we can find an outermost arc component α_{1} of $G \cap P$ in G and the corresponding outermost disk δ_{1} in G with $\delta_{1} \cap K_{2}=\emptyset$ because $G \cap K_{2}=$ a single point. Then, we can perform a boundary compression of P at α_{1} along δ_{1} from V_{2} to V_{1}, and we get a band, say b_{1}, in V_{1}.

If b_{1} connects the different components F_{i} and F_{j}, then we can reduce the number of the disks. Hence, we may assume that b_{1} meets F_{k} and $F_{k} \cup b_{1}$ is an annulus, say A_{1}. If A_{1} is a compressing annulus in V_{1}, then we have a compressing disk for A_{1} which intersects K_{1} in a single point. Then by cutting D by the compressing disk, we can retake D so that $D \cap V_{1}$ consists of fewer disks than $m+k$. Hence, A_{1} is an annulus winding around the longitude of V_{1} at least once. By repeating boundary compressions from V_{2} to V_{1}, we have $D \cap V_{1}=A_{1} \cup A_{2} \cup \cdots \cup A_{k} \cup E_{0}$, where $A_{i}(i=1,2, \ldots, k)$ are all mutually parallel incompressible annuli. In this situation, $D \cap V_{2}$ consists of k annuli and a single disk, say Q. Then, since a component of ∂Q is identified with a component of ∂A_{i} for some i, Q is a meridian disk of V_{2} and A_{i} winds around V_{1} exactly once. Let H be a meridian disk of V_{1} intersecting a component of ∂A_{i} in a single point and K_{1} in a single point with $H \cap K_{3}=\emptyset$. Then, ∂H intersects ∂Q in a single point, and since ∂Q and ∂G are isotopic to each other in ∂V_{2} and we can take the isotopy not intersecting $K_{3} \cap \partial V_{2}$, we may assume that ∂H intersects ∂G in a single point. Thus G and H are the required meridian disks. Hence, hereafter we assume $m>0$.

Suppose $E_{0} \cap K_{1}=\emptyset$ as in Fig. (7). If b_{1} meets E_{1} or E_{m}, say E_{1}, then the annulus $E_{1} \cup b_{1}$ is compressing and, by using the compressing disk, we can retake the disk D so that $D \cap V_{1}$ consists of fewer disks than $m+k$. This contradicts the minimality of $m+k$. If b_{1} meets F_{k}, then we have a similar contradiction. Hence b_{1} connects two different disks. Then we have a similar contradiction. Thus we may assume that $E_{0} \cap K_{1} \neq \emptyset, k=0$ and $D \cap V_{1}=E_{0} \cup E_{1} \cup \cdots \cup E_{m}$ as in Fig. 7 b).

Suppose b_{1} meets E_{1} or E_{m}, say E_{1}, and suppose a component of $\partial\left(E_{1} \cup b_{1}\right)$ bounds a disk in ∂V_{1} containing the two points $K_{3} \cap \partial V_{1}$. In this case, by using the compressing disk for the annulus $E_{1} \cup b_{1}$, we can retake D so that $D \cap V_{1}$ consists of E_{0} and at most m meridian disks and b_{1} connects E_{1} and E_{m}. Hence, we may assume that b_{1} connects two different components, and we have the following two cases:
(1) b_{1} connects E_{1} and E_{m} and $\partial\left(E_{1} \cup b_{1} \cup E_{m}\right)$ bounds a disk in ∂V_{1} containing the two points $K_{3} \cap \partial V_{1}$ as in Fig. 8 (a).

Fig. 8. b_{1} in V_{1}.
(2) b_{1} connects E_{0} and E_{1} or E_{m}, say E_{1}, and there is no such a disk R that ∂R consists of a subarc of $E_{0} \cup b_{1} \cup E_{1}$ and a subarc of K_{1} with $D \cap \operatorname{Int} R=\emptyset$ as in Fig. 8 (b).

Suppose we are in Case (1). Let α_{2} be an outermost arc of $G \cap P$ in G at the second stage, and let δ_{2} and b_{2} be the corresponding outermost disk and the band. If b_{2} meets a single component E_{i}, then, by the same arguments as above, we can retake D so that b_{2} can be regarded as a band connecting two different components. Hence, we may assume that b_{2} connects E_{i} and E_{j} for $i \neq j$. Suppose $\delta_{1} \cap \delta_{2}=\emptyset$. If there is a disk R such that ∂R consists of a subarc of $E_{i} \cup b_{2} \cup E_{j}$ and a subarc of K_{1} with $D \cap \operatorname{Int} R=\emptyset$, then by changing the order of b_{1} and b_{2} and by using the disk R we can reduce the number of the disks $D \cap V_{1}$. If b_{2} connects E_{1} and E_{m} and b_{2} and b_{1} are parallel, then a component of $\partial\left(E_{1} \cup b_{1} \cup b_{2} \cup E_{m}\right)$ bounds a disk in ∂V_{1} contains no points of $K_{3} \cap \partial V_{1}$. Then by using this disk we can retake the disk D with fewer components of $D \cap V_{1}$. If b_{2} connects E_{0} and E_{1}, then by the deformation as in Fig. 9 we may assume that b_{2} is a "straight" band and we can take a disk R as above. Hence, we may assume that $\delta_{1} \cap \delta_{2} \neq \emptyset$, in fact we have $\delta_{1} \subset \delta_{2}$.

By continuing these arguments for b_{3}, b_{4}, \ldots, we may assume that all components of $G \cap P$ are parallel and $b_{i}(i=2,3,4, \ldots)$ runs through over b_{i-1}.

First suppose $m=2$. Then, since b_{2} runs through over b_{1}, b_{2} connects E_{1} and E_{2} as in Fig. 10(a). Then, each component of $\partial\left(E_{1} \cup b_{1} \cup b_{2} \cup E_{2}\right)$ winds around the longitude of V_{1} at least two times. However, at least one component bounds

Fig. 9. Deformation of b_{2} along b_{1}.

K. Morimoto

Fig. 10. $b_{1}, b_{2}, \cdots, b_{m-1}$ in V_{1}.
a disk in V_{2}, because P consists of an annulus and a disk at this stage. This is a contradiction.

In general case, let $b_{1}, b_{2}, \ldots, b_{k}$ be the bands produced by the boundary compressions, where b_{1} connects E_{1} and E_{m}, b_{2} connects E_{2} and E_{m-1}, \ldots, b_{k} connects E_{k} and E_{m-k+1}. In this case we may assume $m=2 k$. Then as in the case of $m=2$, let $b_{k+1}, b_{k+2}, \ldots, b_{2 k}$ be the bands produced by the boundary compressions, where b_{k+1} connects E_{k} and $E_{k+1}, \ldots, b_{2 k}$ connects E_{1} and $E_{2 k}$. Then, each component of ∂P at this stage is an essential loop in ∂V_{1} winding around the longitude of V_{1} at least two times. However, at this stage, P has at least one disk component. This is a contradiction. Afterall, we see that Case (1) does not occur.

Next suppose we are in Case (2). By the arguments similar to Case (1), we may assume that all components of $G \cap P$ are parallel as in Case (1).

Perform the sequence of boundary compressions at $\alpha_{1}, \alpha_{2}, \ldots \alpha_{m-1}$. Then, the sequence of bands $b_{1}, b_{2}, \cdots b_{m-1}$ are produced as in Fig. 10)(b), where b_{1} connects E_{0} and E_{1}, b_{2} connects E_{1} and E_{2}, \ldots, b_{m-1} connects E_{m-2} and E_{m-1}. At the $(m-1)$ th stage, P is an annulus and ∂P consists of ∂E_{m} and an arc connecting the two points $K_{3} \cap \partial V_{2}$. Then, ∂E_{m} intersects G in a single point. Thus by taking E_{m} as D_{1} and by taking G as D_{2}, we can complete the proof of the claim.

Let $N\left(D_{i}\right)$ be a regular neighborhood of D_{i} in $V_{i}(i=1,2)$. If $D_{i} \cap \Delta_{i} \neq \emptyset$, then by standard cut and paste arguments we can retake Δ_{i} so that $D_{i} \cap \Delta_{i}=\emptyset$. Put $W_{1}=c l\left(V_{1}-N\left(D_{1}\right)\right) \cup N\left(D_{2}\right), W_{2}=c l\left(V_{2}-N\left(D_{2}\right)\right) \cup N\left(D_{1}\right)$. Then, by the above claim, both W_{1} and W_{2} are 3-balls and $\left(W_{1}, W_{2}\right)$ is a genus zero Heegaard splitting of S^{3}. Put $K_{1} \cap W_{i}=\alpha_{i}, K_{2} \cap W_{i}=\beta_{i}$, and $K_{3} \cap W_{i}=\gamma_{i}(i=1,2)$. Then, since $\operatorname{cl}\left(V_{1}-N\left(D_{1}\right)\right) \cap N\left(D_{2}\right)$ is a disk, a trivializing disk for α_{1} in $\operatorname{cl}\left(V_{1}-N\left(D_{1}\right)\right)$ and Δ_{1} extend to trivializing disks for α_{1} and γ_{1} in W_{1} disjoint from a trivializing disk for β_{1}. Hence, $\left(W_{1}, \alpha_{1} \cup \beta_{1} \cup \gamma_{1}\right)$ is a 3 -string trivial tangle, and by the same arguments $\left(W_{2}, \alpha_{2} \cup \beta_{2} \cup \gamma_{2}\right)$ is a 3 -string trivial tangle too. Thus $K_{1} \cup K_{2} \cup K_{3}$ is a 3-bridge link, and this completes the proof of Lemma 8 .

Now, we prove Theorem 6]. Let $L=K_{1} \cup K_{2}$ be a tunnel number one link of type II with an essential torus, and let T be the essential torus in the exterior. Let γ be
an unknotting tunnel of type II of L with $K_{1} \cap \gamma=\partial \gamma$, and put $V_{1}=N\left(K_{1} \cup \gamma\right)$ and $V_{2}=\operatorname{cl}\left(S^{3}-V_{1}\right)$. Then, $\left(V_{1}, V_{2}\right)$ is a genus two Heegaard splitting of S^{3} as illustrated in Fig. [1(b).

By considering the intersections of T and $K_{1} \cup \gamma$, we may assume that $T \cap V_{1}=$ $D_{1} \cup D_{2} \cup \cdots \cup D_{n}$, where $D_{i}(i=1,2, \ldots n)$ is a disk properly embedded in V_{1} not ∂-parallel as illustrated in Fig. 11.

Put $P=T \cap V_{2}$, then P is a genus one surface properly embedded in V_{2} with n boundary components. Suppose n is minimal among all such essential tori. Then by the minimality of n, P is incompressible in $V_{2}-K_{2}$. Let E be a meridian disk of V_{2} with $E \cap K_{2}=\emptyset$. Then, we may assume that each component of $P \cap E$ is an arc properly embedded in both P and E.

Let α be an outermost arc component of $P \cap E$ in E, and let Δ be the corresponding outer most disk. Then, we can perform a boundary compression of P at α along Δ from V_{2} to V_{1}, and we get a band, say b, in V_{1}. If b connects two different disks, then we can reduce the number of the components of $T \cap V_{1}$, and this contradicts the minimality of n. Thus b meets a single disk and we get an annulus $b \cup D_{1}$ or $b \cup D_{n}$ properly embedded in V_{1}, because the annulus is incompressible in $V_{1}-K_{1}$. If the annulus is compressible in V_{1}, then there is a compressing disk for the annulus intersecting K_{1} in a single point. Then, we see that L is composite and $C(1)$ holds by Theorem 3. Thus we may assume that the annulus is incompressible in V_{1}, i.e. b winds around a handle at least once. We note that if a separating incompressible annulus winds around the handle not containing K_{1} exactly once, then it is ∂-parallel and we can reduce the number n.

Then, by [8 Lemma 3.4] and by the arguments similar to the proof of [10, Lemmata 1.1 and 1.5] and [12, Theorem A], we have the following:

Lemma 9. Under the above situations, by changing V_{1} and V_{2} if necessary, T can be isotoped into one of the following positions illustrated in Fig. 12:
(1) $T \cap V_{1}$ is a separating incompressible annulus winding around the handle not containing $K_{1} p$ times for some $|p|>1$, and $T \cap V_{2}$ is a separating incompressible annulus winding around the handle not containing $K_{2} q$ times for some $|q|>1$,

Fig. 11. $T \cap V_{1}$.

Fig. 12. Annuli in handlebodies.
(2) $T \cap V_{1}$ is a separating incompressible annulus winding around the handle not containing $K_{1} p$ times for some $|p|>1$, and $T \cap V_{2}$ is a separating incompressible annulus winding around the handle containing $K_{2} q$ times for some $|q|>0$,
(3) $T \cap V_{1}$ is a separating incompressible annulus winding around the handle containing $K_{1} p$ times for some $|p|>0$, and $T \cap V_{2}$ is a separating incompressible annulus winding around the handle containing $K_{2} q$ times for some $|q|>0$,
(4) $T \cap V_{1}$ consists of two separating incompressible annuli, one of them is winding around the handle containing $K_{1} p$ times for some $|p|>0$, the other is winding around the handle not containing $K_{1} q$ times for some $|q|>1$, and $T \cap V_{2}$ consists of two non-separating incompressible annuli winding the handle containing $K_{2} r$ times for some $|r|>0$,
(5) $T \cap V_{1}$ consists of two non-separating incompressible annuli winding the handle containing $K_{1} p$ times for some $|p|>0$, and $T \cap V_{2}$ consists of two nonseparating incompressible annuli winding the handle containing $K_{2} q$ times for some $|q|>0$.

We omit the proof of this lemma, and by using this lemma we prove Theorem 6 . If L is composite, then by Theorem 3 we have the condition $C(1)$. Hence, we may assume that L is prime.

Suppose we are in Case (1). Let X_{i} be a genus two handlebody in V_{i} and Y_{i} a solid torus in V_{i} cut off by the annulus $T \cap V_{i}$ for $i=1,2$. Put $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Then, X is a $(1,1)$-knot exterior in some lens space as illustrated in the left-hand of Fig. 13 and $Y=E(p, q)$. Since $|p|>1$ and $|q|>1, Y$ is a non-trivial torus knot exterior, and hence X is a solid torus. Since $X \cup Y$ is S^{3}, a regular fiber of the Sefert fibered space $Y=E(p, q)$ is identified with a longitude of the solid torus X and it is a meridian of the (1, 1)-knot. Hence, the lens space is S^{3}.

Then we denote the $(1,1)$-knot in S^{3} with the (1,1)-decomposition by K_{3} as illustrated in the right-hand of Fig. [13] Then K_{3} is a trivial knot in S^{3} because X is a solid torus, and by Lemma $8, K_{1} \cup K_{2} \cup K_{3}$ is a 3-bridge link. If at least one of $K_{1} \cup K_{3}$ and $K_{2} \cup K_{3}$ is a trivial link, then L is a composite link or a Hopf link, and this is a contradiction. Hence, both $K_{1} \cup K_{3}$ and $K_{2} \cup K_{3}$ are non-trivial 2-bridge links. Thus, L is an MS-link and we have the condition $C(4)$.

Suppose, we are in Case (2). Let X_{i} be a genus two handlebody in V_{i} and Y_{i} a solid torus in V_{i} cut off by the annulus $T \cap V_{i}$ for $i=1,2$. Put $X=X_{1} \cup X_{2}$ and

Fig. 13. (1, 1)-knot.
$Y=Y_{1} \cup Y_{2}$. Then, X is a (1, 1)-knot exterior in some lens space as in Case (1), and $Y=E(p, q)$ with $|p|>1$ and $|q|>0$.

If $|q|>1$, then $E(p, q)$ is a non-trivial torus knot exterior and K_{2} is an exceptional fiber of the Seifert fibered space $E(p, q)$. Then, as in Case (1), X is a solid torus, the lens space is S^{3} and the $(1,1)$-knot is a trivial knot in S^{3}. By putting the trivial knot K_{3} and by [12] Lemma 2.3], we have the link $K_{1} \cup K_{3}$ defined to get an MS-knot. In addition, a meridian of the trivial knot K_{3} is identified with a regular fiber of the Seifert fibered space $E(p, q)$. Thus, L is an union of an MSknot and an exceptional fiber of the Seifert fibered space $E(p, q)$, and we have the condition $C(2)$.

If $|q|=1$, then $E(p, q)$ is a solid torus and K_{2} is a regular fiber of the Seifert fibration of the solid torus. By using Cyclic Surgery Theorem of [1] and by [13], X is the Seifert fibered space over a disk with one or two exceptional fibers.

If it has one exceptional fiber, then X is a solid torus, i.e. X is a trivial knot exterior of S^{3}. Then by the same arguments as above, we see that L is an union of an EMS-knot and a regular fiber of $E(p, q)$, and we have the condition $C(3)$. If it has two exceptional fibers, then the $(1,1)$-knot is a non-trivial torus knot which is not a core of the lens space. Then by [10] Theorem 3], the (1,1)-knot has a unique (1, 1)-decomposition and we can perform boundary compression from V_{1} to V_{2} and from V_{2} to V_{1} simultaneously. Then we have the same situation as the case of $|q|>1$ because X has two exceptional fibers. Thus, we have the condition $C(2)$.

Suppose, we are in Case (3). Let X_{i} be a genus two handlebody in V_{i} and Y_{i} a solid torus in V_{i} cut off by the annulus $T \cap V_{i}$ for $i=1,2$. Put $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Then, X is a $(1,1)$-knot exterior in some lens space, and $Y=E(p, q)$ with $|p|>0$ and $|q|>0$. Since X contains neither K_{1} nor K_{2}, X is not a solid torus. If $|p|>1$ and $|q|>1$, then $E(p, q)$ is not a solid torus and T is incompressible torus in S^{3}. This is a contradiction. Suppose $|p|>1$ and $|q|=1$ or $|p|=1$ and $|q|>1$, then by the same arguments as the proof of Case (2), X is a Seifert fibered space over a disk with one or two exceptional fibers. If it has one exceptional fiber, then X is a solid torus and this is a contradiction. If it has two exceptional fibers, then by the same arguments as the proof of Case (2), we can perform boundary compressions from V_{1} to V_{2} and from V_{2} to V_{1} simultaneously. Then, we have the same situation as the Case (1) and we have the condition $C(4)$.

Suppose $|p|=|q|=1$. Then, K_{1} is isotopic to a component of $\partial\left(T \cap V_{1}\right)$ in V_{1} and K_{2} is isotopic to a component of $\partial\left(T \cap V_{2}\right)$ in V_{2}. This means K_{1} and K_{2} are two copies of a doubly primitive knot in $\partial V_{1}=\partial V_{2}$. Hence, L is a DP-link and we have the condition $C(5)$.

Suppose, we are in Case (4). Let X_{1} be a genus two handlebody in V_{1}, and Y_{1}^{1} and Y_{1}^{2} two solid tori in V_{1} cut off by the two annuli $T \cap V_{1}$. Let X_{2} be a genus two handlebody in V_{2} and Y_{2} a solid torus in V_{2} cut off by the annulus $T \cap V_{2}$. Put $X=X_{1} \cup X_{2}$ and $Y=\left(Y_{1}^{1} \cup Y_{1}^{2}\right) \cup Y_{2}$. Then, X is a 2-bridge knot exterior as illustrated in Fig. 14 and Y is a Seifert fibered space over a disk with three

Fig. 14. 2-bridge knot.
exceptional fibers whose indices are $|p|>0,|q|>1$ and $|r|>0$. Since X contains neither K_{1} nor K_{2}, the 2-bridge knot is a non-trivial knot. If $|p|>1$ or $|r|>1$, then Y is not a solid torus and T is an incompressible torus in S^{3}. This is a contradiction, and hence $|p|=|r|=1$. Then, Y is a solid torus and this means that a non-trivial Dehn surgery along a non-trivial knot yields S^{3}. Then, we have a contradiction by 4. Theorem 2], Thus Case (4) does not occur.

Suppose we are in Case (5). Let X_{i} be a genus two handlebody in V_{i} and Y_{i} a solid torus in V_{i} cut off by the annulus $T \cap V_{i}$ for $i=1,2$. Put $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$. Then X is a 2-bridge knot exterior and Y is a Seifert fibered space over a Möbius band with 0,1 , or 2 exceptional fibers. This means that S^{3} contains a Klein bottle. This contradiction shows that Case (5) does not occur.

On the other hand, if L satisfies one of the five conditions $C(1), C(2), C(3)$, $C(4)$ and $C(5)$, then by tracing back the above arguments L has an essential torus in the exterior. This completes the proof of Theorem 6.

4. Tangle Decompositions

First we prepare the following fact which is straightforward from the definition of (1, 1)-decompositions. So we omit the proof.

Fact 10. A knot K has a $(1,1)$-decomposition if and only if K is in ∂V for a standard genus two handlebody V in S^{3} such that $K \cap D_{1}=$ a single point and $K \cap D_{2}=n$ points for some $n \geq 0$ as illustrated in Fig. 15(a), where D_{1} and D_{2} are meridian disks of V, each of which has a canceling disk in the complementary handlebody.

In Fig. 15(a), by cutting open V with the disks D_{1}, D_{2}, we can get a 3-ball B and $n+1$ strings in ∂B as in Fig. 15(b). Conversely, let ($B, t_{1} \cup t_{2} \cup \cdots \cup t_{n} \cup t_{n+1}$) be an $n+1$-string tangle such that $t_{1} \cup \cdots \cup t_{n+1}$ is parallel to ∂B and by closing the tangle with $n+1$ strings we can get a $(1,1)$-knot in ∂V for a standard genus two handlebody V, then we call $\left(B, t_{1} \cup t_{2} \cup \cdots \cup t_{n} \cup t_{n+1}\right)$ a (1, 1)-tangle as in

Fig. 15. (1, 1)-knot.

Fig. 15(b). We note that if $n=1$ then a $(1,1)$-tangle is a rational tangle. Then, we have:

Proposition 11. Let K_{1} be a 2-bridge knot and K_{2} a (1,1)-knot, and let $L=$ $K_{1} \cup K_{2}$ be a link illustrated in Fig.16(a). Then, L is a tunnel number one link of type II not of type I.

Proof. Let γ be an arc in the 3-ball B_{1} which connects the two strings of the rational tangle so that γ is a level arc of the 2 -string trivial tangle. Then, $K_{1} \cup \gamma$ is deformed into a trivial glasses as in Fig. 16(b). This means that the complementary space of $K_{1} \cup \gamma$ is a genus two handlebody, say V, and K_{2} is in V. Then, since the (1, 1)-tangle in B_{2} is parallel to ∂B_{2} and since V can be regarded as a handlebody obtained by adding two 1 -handles to B_{2} as in Fig. 15, we see that K_{2} is parallel to ∂V and there is a canceling meridian disk D intersecting K_{2} in a single point. This shows that K_{2} is a core of V and L is a tunnel number one link of type II. In addition, neither K_{1} nor K_{2} is a trivial knot. Then, by [3, Theorem 1.5] and Proposition 12(1) below, L is not of type I. This completes the proof.

For essential tangle decompositions of tunnel number one links obtained in the above proposition, we have:

Fig. 16. $L=K_{1} \cup K_{2}$.

Fig. 17. Tangle decompositions.

Fig. 18. $\quad(n+1, n+2)$-torus knot.

Proposition 12. (1) The link L in Proposition 11 has a 2-string essential tangle decomposition. (2) For any $n>0$, there are infinitely many tunnel number one links of type II not of type I each of which has a 2-string essential tangle decomposition and an $n+1$-string essential tangle decomposition.

Proof. (1) Decompose the link L in Proposition 11 into the two tangles with the line (1) as in Fig. 17. Then the decomposition with the line (1) is a 2 -string essential tangle decomposition because K_{1} and K_{2} are non-trivial knots.
(2) For the links in Proposition 11, let K_{2} be an $(n+1, n+2)$-torus knot for $n>0$ as in Fig. 18(a). Decompose the link L into the two tangles with the line (2) as in Fig. 17. Then we can see that the decomposition with the line (2) is an $n+1$-string essential tangle decomposition as in Fig. 18(b). This completes the proof.

References

[1] M. Culler, C. McA. Gordon, J. Lueke and P. B. Shalen, Dehn surgery on knots, Ann. Math. 125 (1987) 237-300.
[2] M. Eudave-Muñoz and Y. Uchida, Non-simple links with tunnel number one, Proc. A. M. S. 124 (1996) 1567-1575.
[3] C. McA. Gordon and A. W. Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Theory and its Ramifications 4(3) (1995) 389-406.
[4] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371-415.
[5] J. Hempel, 3-manifolds, Annals of Mathematics Studies, Vol. 86 (Princeton University Press, 1976).
[6] K. Ishihara, On Heegaard splittings of link exteriors, Saitama Math. J. 25 (2008) 27-33.
[7] W. Jaco, Lectures on Three Manifold Topology, CBMS Regional Conference Series in Mathematics, Vol. 43 (1980).
[8] T. Kobayashi Structures of the Haken manifolds with Heegaard splittings of genus two. Osaka, J. Math. 21 (1984) 437-455.
[9] Y. Moriah and T. Pinsky, On the Berge Conjecture for tunnel number one knots, preprint (2017), arXiv:1701.01421
[10] K. Morimoto, On minimum genus Heegaard splittings of some orientable closed 3manifolds, Tokyo, J. Math. 12 (1989) 3321-3355.
[11] K. Morimoto, On composite tunnel number one links, Topology and its Applications 59 (1994) 59-71.
[12] K. Morimoto and M. Sakuma, On unknotting tunnels for knots, Mathematische Annalen 289 (1991) 143-167.
$[13]$ L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737-745.
[14] D. Rolfsen, Knots and Links, Mathematics Lecture Series, Vol. 7 (Publish or Perish Inc., Berkeley, Ca, 1976).

