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ABSTRACT

In the present paper, we consider two types of 2-component links with genus two
Heegaard splittings. One of them is an ordinary tunnel number one link, and the other
is a somewhat different tunnel number one link. We will try to detect the differences
between those two types. In fact, we will characterize composite tunnel number one links
of the second type, and tunnel number one links of the second type with essential tori.
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1. Introduction

Let K be a knot in S3. Then, we say that K is tunnel number one if K is a non-
trivial knot and there is a genus two Heegaard splitting (V1, V2) of S3 such that K

is a core of a handle of V1 or of V2.
Next, let L = K1 ∪ K2 be a 2-component link in S3, and let N(L) = N(K1) ∪

N(K2) be a regular neighborhood of L in S3 and E(L) = cl(S3−N(L)) the exterior.
Then ∂E(L) = ∂N(K1) ∪ ∂N(K2) is two tori. Suppose E(L) has a genus two
Heegaard splitting E(L) = C1 ∪ C2, where Ci(i = 1, 2) is a genus two handlebody
or a genus two compression body. Then, we have the following two cases: one of
them is that ∂E(L) is contained in ∂C1 or in ∂C2, and the other is that, by changing
the letters if necessary, ∂N(K1) (∂N(K2) respectively) is contained in ∂C1 (∂C2

respectively).
So far, we say that L is tunnel number one if the former case occurs, and it

seems that the latter case has not been much studied. See [3, 11, 2] for example. In
knot case, there are no such ambiguities, but in link case, we need to consider the

1950054-1

http://dx.doi.org/10.1142/S0218216519500548


July 17, 2019 11:35 WSPC/S0218-2165 134-JKTR 1950054

K. Morimoto

differences between these two cases. In the present paper, we study these two cases
and try to detect the differences. So we will define the two types of tunnel number
one links as follows.

We say that L is a tunnel number one link of type I if there is an arc γ in S3

such that L ∩ γ = ∂γ, γ connects K1 and K2 and the exterior E(K1 ∪ γ ∪ K2)
is a genus two handlebody (Fig. 1(a)), and that L is a tunnel number one link of
type II if there is an arc γ in S3 such that, by changing the letters if necessary,
L ∩ γ = K1 ∩ γ = ∂γ and the exterior E(K1 ∪ γ) is a genus two handlebody
containing K2 as a core of a handle (Fig. 1(b)).

In case of type I we call γ an unknotting tunnel of type I, and in case of type II we
call γ an unknotting tunnel of type II. Put V1 = N(K1∪γ∪K2) and V2 = cl(S3−V1)
in case of type I, and put V1 = N(K1 ∪ γ) and V2 = cl(S3 − V1) in case of type II.
Then in both cases, (V1, V2) is a genus two Heegaard splitting of S3 as in Fig. 1.

On inclusion relations of type I and type II, Ishihara showed in [6] the following:

Theorem 1 ([6, A part of Theorems 1.4, 1.5]). (1) There are infinitely many
tunnel number one links of type I not of type II. (2) There are infinitely many tunnel
number one links of type II not of type I.

By this theorem, we see that two families of tunnel number one links of type I
and of type II are independent. Of course the intersection of these two families is
not empty. For example, 2-bridge links are tunnel number one links of both types.
In the present paper we characterize tunnel number one links of type II with some
conditions.

First, we consider composite tunnel number one links. We say that a knot K

is a 2-bridge knot if K is a non-trivial knot and there is a genus zero Heegaard
splitting (B1, B2) of S3 such that K ∩ Bi is a 2-string trivial arc system properly

(a) (b)

Fig. 1. Heegaard splittings and unknotting tunnels.
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embedded in Bi(i = 1, 2), and that a knot K is a (1, 1)-knot if K is a non-trivial
knot and there is a genus one Heegaard splitting (V1, V2) of S3 such that K ∩ Vi

is a trivial arc properly embedded in Vi(i = 1, 2). We call the decomposition a
(1, 1)-decomposition. In [11], we characterized composite tunnel number one links
of type I as follows:

Theorem 2 ([11, Theorem 1]). Let L be a tunnel number one link of type I.
Then, L is composite if and only if L is a connected sum of a 2-bridge knot and a
Hopf link.

In Sec. 2, we will characterize composite tunnel number one links of type II as
follows:

Theorem 3. Let L be a tunnel number one link of type II. Then, L is composite
if and only if L is a connected sum of a (1, 1)-knot and a Hopf link.

By these two theorems and the fact that 2-bridge knots are (1, 1)-knots, we see
that the family of composite tunnel number one links of type I is properly contained
in the family of composite tunnel number one links of type II, and that the difference
is corresponding to the difference between 2-bridge knots and (1, 1)-knots.

Next, we consider tunnel number one links with essential tori, where a torus in
the link exterior is essential if the torus is incompressible and is not ∂-parallel. Let
K1 ∪ K2 be a 2-bridge link not a Hopf link or a trivial link. Since K2 is a trivial
knot, E(K2) is a solid torus with K1 ⊂ E(K2). Let T (p, q) be a torus knot of type
(p, q) for some relatively prime integers p, q with |p| > 1 and |q| > 1, and let N(p, q)
be a regular neighborhood of T (p, q) and E(p, q) = cl(S3 − N(p, q)) the exterior.
Then, E(p, q) is a Seifert fibered space over a disk with two exceptional points
D(−r/p, s/q) with ps − qr = 1. Let m be a longitude of the solid torus E(K2) in
∂E(K2) which is a meridian of K2, and � a regular fiber of D(−r/p, s/q) in ∂E(p, q),
then we have an orientation preserving homeomorphism f : E(K2) → N(p, q) with
f(m) = �. Then we have a knot f(K1) ⊂ f(E(K2)) = N(p, q) ⊂ S3 and call f(K1)
an MS-knot. Then since K1∪K2 is not a Hopf link or a trivial link and since T (p, q)
is a non-trivial torus knot, MS-knot contains an essential torus in the exterior. Then
in [11] we showed the following:

Theorem 4 ([12, Theorem A]). Let K be a tunnel number one knot. Then, K

has an essential torus in the exterior if and only if K is an MS-knot.

For link version, we need to extend the definition of MS-knots as follows:
Let p, q be integers with |p| = 1, |q| > 1 or |p| > 1, |q| = 1, and let E(p, q) be the

exterior of the torus knot T (p, q). In this case, T (p, q) is a trivial knot and E(p, q)
is a solid torus. Then by the same way as above, we can define the knot f(K1)
called an extended MS-knot and denoted by EMS-knot. Since E(p, q) is a solid
torus, EMS-knots do not have essential tori in the exteriors. However, the union of
an EMS-knot and a regular fiber of D(−r/p, s/q) is a link with an essential torus
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in the exterior since |q| > 1 or |p| > 1. Then as a link version of the above theorem,
Eudave–Muñoz and Uchida showed the following:

Theorem 5 ([2, Theorems 1, 2]). Let L be a tunnel number one link of type
I. Then L has an essential torus in the exterior if and only if one of the following
holds :

C(1): L is a connected sum of a 2-bridge knot and a Hopf link,
C(2): L is a union of an MS-knot and an exceptional fiber of the Seifert fibered

space D(−r/p, s/q), where |p| > 1 and |q| > 1,

C(3): L is a union of an EMS-knot and a regular fiber of the Seifert fibered space
D(−r/p, s/q), where |p| = 1, |q| > 1 or |p| > 1, |q| = 1.

Remark. In [2], tunnel number one links of type I with essential annuli have been
classified. In fact, they noted in [2] that a tunnel number one link of type I with
essential tori has essential annuli. Therefore, to state the above theorem, we need
to pick up links with essential tori from [2, Theorems 1, 2]. Then [2, Theorem 1(i)],
[2, Theorem 2(i)] and a subfamily of [2, Theorem 2(ii)] are all links we need. The
situation has been stated in the note after the proof of [2, Theorem 2].

In Sec. 3, we will characterize tunnel number one links of type II with essential
tori. Let’s consider a 3-bridge link K1 ∪ K2 ∪ K3 with the following conditions:

(i) K1 ∪ K2 is a Hopf link,
(ii) both K1 ∪ K3 and K2 ∪ K3 are non-trivial 2-bridge links.

Then, since K3 is a trivial knot, E(K3) is a solid torus with K1 ∪K2 ⊂ E(K3).
Let m be a longitude of the solid torus E(K3) in ∂E(K3) which is a meridian of
K3, and let T (p, q), N(p, q), E(p, q) and � be as above, where |p| > 1 and |q| > 1.
Then, we have an orientation preserving homeomorphism f : E(K3) → N(p, q)
with f(m) = �. Then we have a link f(K1 ∪ K2) ⊂ f(E(K3)) = N(p, q) ⊂ S3 and
call L = f(K1 ∪K2) an MS-link. Then by the above condition (ii) and that T (p, q)
is a non-trivial knot, MS-link contains an essential torus in the exterior, and is not
a composite link. The link illustrated in Fig. 2 is an example of an MS-link.

Fig. 2. MS-link.
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Let K be a tunnel number one knot, and let (V1, V2) be a genus two Heegaard
splitting such that V1 contains K as a core of a handle. Then, K is isotopic to a
loop in ∂V1, and we denote the loop by the same notation K. Then, K is a loop in
∂V2 too. Suppose K is primitive in V2, i.e. K is isotopic to a core of a handle of V2.
According to [9] we call such a knot doubly primitive knot. Let A be an annulus in
∂V1 = ∂V2 such that a component of ∂A is K, and put K ′ = ∂A − K. Then, we
call the 2-component link K ∪ K ′ in S3 a DP-link.

Then, we show the following:

Theorem 6. Let L be a tunnel number one link of type II. Then, L has an essential
torus in the exterior if and only if one of the following holds:

C(1) : L is a connected sum of a (1, 1)-knot and a Hopf link,
C(2) : L is a union of an MS-knot and an exceptional fiber of the Seifert fibered

space D(−r/p, s/q), where |p| > 1 and |q| > 1,

C(3) : L is a union of an EMS-knot and a regular fiber of the Seifert fibered space
D(−r/p, s/q), where |p| = 1, |q| > 1 or |p| > 1, |q| = 1,

C(4) : L is an MS-link
C(5) : L is a DP-link.

By these two theorems, we see that the family of tunnel number one links of
type I with essential tori is properly contained in the family of tunnel number one
links of type II with essential tori. In fact, C(2)∪C(3) and C(4)∪C(5) are disjoint,
because two components of the links in C(2) ∪ C(3) are separated by the essential
tori, but two components of the links in C(4)∪C(5) are in one side of the essential
tori.

Finally, we consider tunnel number one links with essential tangle decomposi-
tions. We say that a link L has an n-string essential tangle decomposition for n > 0
if there is a genus zero Heegaard splitting (B1, B2) of S3 such that (Bi, L∩Bi) is an
n-string essential tangle for both i = 1, 2, where (Bi, L∩Bi) is essential if ∂Bi −L

is incompressible in Bi −L for n > 1 and L∩Bi is not a trivial arc in Bi for n = 1.
Then Gordon and Reid showed in [3] the following:

Theorem 7 ([3, A part of Theorem 1.5]). If a tunnel number one link L of type
I has an essential tangle decomposition, then at least one of the two components of
L is a trivial knot.

On tangle decompositions of tunnel number one links of type II, Ishihara showed
in [6] that 2-component Montesinos link M(b; a1

b1
, 1

2 , a2
b2

, 1
2 ) is a tunnel number one

link of type II not of type I, where (ai, bi) is a pair of relatively prime integers for
i = 1, 2 with |bi| > 1. Then, we see that this link has a 2-string essential tangle
decomposition, and that both components of this link are 2-bridge knots.

In Sec. 4, we will show that there are infinitely many tunnel number one links
of type II not of type I with n-string essential tangle decomposition for any n > 0,
each of which consists of a 2-bridge knot and a (1, 1)-knot.
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We note that Ishihara showed in [6] that if a tunnel number one link of type
I has a trivial component then it is of type II too ([6, Theorem 1.7]). Thus by
combining these theorems and examples, we see that the family of tunnel number
one links of type I with essential tangle decompositions is properly contained in the
family of tunnel number one links of type II with essential tangle decompositions.

So far, we have considered tunnel number one links with three conditions :
composite, with essential tori and with essential tangle decompositions, and have
seen the differences between tunnel number one links of type I and of type II.
Although Theorem 1 says that there are infinitely many tunnel number one links
of type I not of type II, we cannot get concrete examples of such links yet. So we
set up the following problems at the end of Introduction.

Problems

(1) Construct concrete examples of tunnel number one links of type I not of type II.
(2) Show the type II version of Gordon–Reid’s theorem (Theorem 7 above).

In the present paper, for standard terms and definitions in knot theory and
3-manifold topology, we refer to [5, 7, 14].

2. Proof of Theorem 3

Let L = K1 ∪ K2 be a composite tunnel number one link of type II, and let S

be a decomposing 2-sphere with S ∩ K1 = two points and S ∩ K2 = ∅. Let γ be
an unknotting tunnel of type II of L with K1 ∩ γ = ∂γ. Put V1 = N(K1 ∪ γ) and
V2 = cl(S3−V1), then (V1, V2) is a genus two Heegaard splitting of S3 as illustrated
in Fig. 1(b).

By S ∩ K1 = two points, we may assume that S ∩V1 = D∗
1 ∪ D∗

2 ∪ D1 ∪ D2 ∪
· · · ∪ Dn, where D∗

i (i = 1, 2) is a meridian disk with D∗
i ∩ K1 = one point and

Dj(j = 1, 2, . . . n) is a disk properly embedded in V1 not ∂-parallel as illustrated in
Fig. 3.

Put P = S ∩ V2, then P is a planar surface properly embedded in V2 with
n + 2 boundary components. Suppose n is minimal among all such decomposing

Fig. 3. S ∩ V1.
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2-spheres. Then, we may assume that P is incompressible in V2 − K2. Let E be a
meridian disk of V2 with E ∩ K2 = ∅, and suppose n > 0. Then, since ∂P consists
of n + 2(> 2) components, P ∩E �= ∅ and we may assume that each component of
P ∩ E is an arc properly embedded in both P and E.

Let α be an outermost arc component of P ∩ E in E, and let ∆ be the corre-
sponding outer most disk. Then we can perform a boundary compression of P at
α along ∆ from V2 to V1, and we get a band, say b, in V1.

Suppose b connects two different disks. If b connects D∗
1 and D∗

2 , then one of
the two subarcs of K1 cut off by D∗

1 ∪ D∗
2 is parallel into the disk D∗

1 ∪ b1 ∪ D∗
2 .

This means that one of the connected sum summands of L is a trivial knot. Thus,
at least one of the two disks b connects is a disk Di for some i. Then we can reduce
the number of the components of S ∩ V1, and this contradicts the minimality of n.

Thus, b meets a single disk and α meets a single component of ∂P . If α cuts off a
disk from P , then by standard cut and paste arguments, we can retake a meridian
disk E with fewer components of E ∩ P . Hence, α is an essential arc properly
embedded in P . By this observation, we see that each component of ∂(b ∪ Di) for
some i is an essential loop in ∂V1.

Suppose there is a non-separating disk in D1 ∪ D2 ∪ · · · ∪ Dn. Then, since each
component of V1−(D∗

1∪D∗
2∪D1∪D2∪ · · · ∪Dn) is a 3-ball, b∪Di is a compressible

annulus in V1. Then, by performing a surgery along the compressing disk for b∪Di,
we get a decomposing 2-sphere intersecting V1 in fewer essential disks than n. This
contradicts the minimality of n.

Thus D1 ∪ D2 ∪ · · · ∪ Dn are all mutually parallel separating disks. Then, we
may assume that b meets the separating disk Dn and b ∪ Dn is an incompressible
annulus as in Fig. 4.

Suppose b winds around a handle of V1 p times for some p > 1. Then, since
cl(S − (Dn ∪ b)) consists of two disks, the union of the solid torus cut off by Dn ∪ b

and one of the two disks shows that S3 contains a lens space summand of the
order p. Hence, p = 1, and the annulus Dn ∪ b is a ∂-parallel annulus. Then, we can
reduce the number of the components of S∩V1, and this contradicts the minimality

Fig. 4. Dn ∪ b.

1950054-7



July 17, 2019 11:35 WSPC/S0218-2165 134-JKTR 1950054

K. Morimoto

(a) (b)

Fig. 5. (V1 ∪ V2) → (W1 ∪ W2).

of n. After all, we have n = 0 and S ∩ V1 = D∗
1 ∪ D∗

2 . Thus, by [8, Lemma 3.2],
S ∩ V2 is a separating annulus consisting of a separating disk and a band winding
around a handle containing K2 exactly once as in Fig. 5(a).

Let R be the 3-ball in V1 cut off by D∗
1 ∪ D∗

2 indicated in Fig. 5(a). Put W1 =
cl(V1 − R) and W2 = V2 ∪ R as in Fig. 5(b). Then W1 is a solid torus, and since
the annulus S ∩ V2 winds around a handle containing K2 once, W2 is a solid torus
too. Then, since W1 ∩K1 is a trivial arc in W1 and W2 ∩K1 is a trivial arc in W2,
K1 has a (1, 1)-decomposition. Moreover, K2 is a trivial loop in W2 bounding a
disk intersecting K1 in a single point. This shows that L is a connected sum of a
(1, 1)-knot and a Hopf link.

On the other hand, the converse is proved by tracing back the above arguments,
and this completes the proof of Theorem 3.

3. Proof of Theorem 6

Before the proof of Theorem 6, we prepare the following lemma:

Lemma 8. Let K1 ∪K2 ∪K3 be a 3-component link with the following conditions :

(i) there is a genus one Heegaard splitting (V1, V2) of S3 such that Ki is a core of
Vi(i = 1, 2),

(ii) K3 is a trivial knot,
(iii) K3 intersects Vi in a trivial arc and there is a trivializing disk ∆i for K3 ∩ Vi

with ∆i ∩ Ki = ∅ (i = 1, 2) as in Fig. 6.

Then, K1 ∪ K2 is a Hopf link and K1 ∪ K2 ∪ K3 is a 3-bridge link.

Proof. By the condition (i), it is clear that K1 ∪ K2 is a Hopf link.
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Fig. 6. K1 ∪ K2 ∪ K3.

Claim We can take a meridian disk Di (i = 1, 2) of Vi so that Di ∩ Ki is a single
point, Di ∩ K3 = ∅ and ∂D1 ∩ ∂D2 is a single point.

Proof of Claim. Let γ be a “straight arc” connecting K1 and K3 ∩ V1 in V1 as in
Fig. 6 and put Γ = K1 ∪ γ ∪ (K3 ∩ V1). Then, we can regard V1 as a thin regular
neighborhood of the graph Γ.

Let D be a disk with ∂D = K3 by the triviality of K3. Then by considering
intersections D ∩ Γ, we can put D ∩ V1 = E0 ∪ E1 ∪ · · · ∪ Em ∪ F1 ∪ · · · ∪ Fk,
where E0 is a disk with ∂E0 = (K3 ∩ V1)∪ (an arc in ∂V1), Ei(i = 1, 2, . . . , m) is a
meridian disk of V1 intersecting K1 in a single point and Fj(j = 1, 2, . . . k) is a disk
intersecting γ in a single point (see Fig. 7(a) or 7(b)). In this situation, we may
assume that m + k is minimal among all such disks. If V1 ∩D = E0, then D ∩ V2 is
a single disk too, and by using these disks we can take the required meridian disks.
So we may assume that m > 0 or k > 0.

Put P = V2 ∩D = cl(D−(E0∪E1∪· · ·∪Em)−(F1∪· · ·∪Fk)). Then P is a planar
surface such that ∂P = (K3∩V2)∪ (E0 ∩∂V2)∪∂(E1 ∪· · ·∪Em)∪∂(F1 ∪· · · ∪Fk),
where ∂Ei(i = 1, 2, . . . , m) is a longitude of V2. Let G be a meridian disk of V2.
Then, by the existence of ∆2, we may assume that G ∩ K3 = ∅, G ∩ K2 = a single
point.

Suppose m = 0. Then k > 0 because m > 0 or k > 0. If G∩P = ∅, then ∂G is a
longitude in ∂V1 not intersecting D∩∂V1. Let R be a disk in ∂V1 bounded by ∂Fk,
then we have D ∩ ∂V1 ⊂ R and R ∩ ∂G = ∅. Then, we can take a meridian disk H

(a) (b)

Fig. 7. D ∩ V1.
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in V1 such that H ∩ K1 = a single point and ∂H ∩ ∂G = a single point. Moreover
we may assume that H ∩K3 = ∅ because we can take H so that H ∩R = ∅. Then,
G and H are the required meridian disks.

Hence, we may assume that G ∩ P �= ∅ and that each component of G ∩ P is a
loop or an arc properly embedded in G. Suppose there is a loop component, say �,
in G∩P , and let G1 be a disk in G with ∂G1 = �. Since � is a loop in D, � bounds
a disk in D. Then, by standard cut and paste arguments, we can retake the disk D

to eliminate the intersection loop �. Hence, we may assume that each component
of G ∩ P is an arc properly embedded in G. Then, we can find an outermost arc
component α1 of G ∩ P in G and the corresponding outermost disk δ1 in G with
δ1 ∩ K2 = ∅ because G ∩ K2 = a single point. Then, we can perform a boundary
compression of P at α1 along δ1 from V2 to V1, and we get a band, say b1, in V1.

If b1 connects the different components Fi and Fj , then we can reduce the num-
ber of the disks. Hence, we may assume that b1 meets Fk and Fk ∪b1 is an annulus,
say A1. If A1 is a compressing annulus in V1, then we have a compressing disk for
A1 which intersects K1 in a single point. Then by cutting D by the compressing
disk, we can retake D so that D ∩ V1 consists of fewer disks than m + k. Hence,
A1 is an annulus winding around the longitude of V1 at least once. By repeating
boundary compressions from V2 to V1, we have D ∩ V1 = A1 ∪ A2 ∪ · · · ∪ Ak ∪ E0,
where Ai (i = 1, 2, . . . , k) are all mutually parallel incompressible annuli. In this
situation, D ∩ V2 consists of k annuli and a single disk, say Q. Then, since a com-
ponent of ∂Q is identified with a component of ∂Ai for some i, Q is a meridian
disk of V2 and Ai winds around V1 exactly once. Let H be a meridian disk of V1

intersecting a component of ∂Ai in a single point and K1 in a single point with
H ∩ K3 = ∅. Then, ∂H intersects ∂Q in a single point, and since ∂Q and ∂G are
isotopic to each other in ∂V2 and we can take the isotopy not intersecting K3∩∂V2,
we may assume that ∂H intersects ∂G in a single point. Thus G and H are the
required meridian disks. Hence, hereafter we assume m > 0.

Suppose E0 ∩ K1 = ∅ as in Fig. 7(a). If b1 meets E1 or Em, say E1, then the
annulus E1 ∪ b1 is compressing and, by using the compressing disk, we can retake
the disk D so that D ∩ V1 consists of fewer disks than m + k. This contradicts the
minimality of m+ k. If b1 meets Fk, then we have a similar contradiction. Hence b1

connects two different disks. Then we have a similar contradiction. Thus we may
assume that E0 ∩ K1 �= ∅, k = 0 and D ∩ V1 = E0 ∪ E1 ∪ · · · ∪ Em as in Fig. 7(b).

Suppose b1 meets E1 or Em, say E1, and suppose a component of ∂(E1 ∪ b1)
bounds a disk in ∂V1 containing the two points K3 ∩∂V1. In this case, by using the
compressing disk for the annulus E1 ∪ b1, we can retake D so that D ∩ V1 consists
of E0 and at most m meridian disks and b1 connects E1 and Em. Hence, we may
assume that b1 connects two different components, and we have the following two
cases:

(1) b1 connects E1 and Em and ∂(E1 ∪ b1 ∪ Em) bounds a disk in ∂V1 containing
the two points K3 ∩ ∂V1 as in Fig. 8(a).
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(a) (b)

Fig. 8. b1 in V1.

(2) b1 connects E0 and E1 or Em, say E1, and there is no such a disk R that ∂R

consists of a subarc of E0 ∪ b1 ∪ E1 and a subarc of K1 with D ∩ IntR = ∅ as
in Fig. 8(b).

Suppose we are in Case (1). Let α2 be an outermost arc of G ∩ P in G at the
second stage, and let δ2 and b2 be the corresponding outermost disk and the band.
If b2 meets a single component Ei, then, by the same arguments as above, we can
retake D so that b2 can be regarded as a band connecting two different components.
Hence, we may assume that b2 connects Ei and Ej for i �= j. Suppose δ1 ∩ δ2 = ∅.
If there is a disk R such that ∂R consists of a subarc of Ei ∪ b2 ∪ Ej and a subarc
of K1 with D∩ IntR = ∅, then by changing the order of b1 and b2 and by using the
disk R we can reduce the number of the disks D ∩ V1. If b2 connects E1 and Em

and b2 and b1 are parallel, then a component of ∂(E1 ∪ b1 ∪ b2 ∪Em) bounds a disk
in ∂V1 contains no points of K3 ∩ ∂V1. Then by using this disk we can retake the
disk D with fewer components of D ∩ V1. If b2 connects E0 and E1, then by the
deformation as in Fig. 9, we may assume that b2 is a “straight” band and we can
take a disk R as above. Hence, we may assume that δ1 ∩ δ2 �= ∅, in fact we have
δ1 ⊂ δ2.

By continuing these arguments for b3, b4, . . ., we may assume that all components
of G ∩ P are parallel and bi (i = 2, 3, 4, . . .) runs through over bi−1.

First suppose m = 2. Then, since b2 runs through over b1, b2 connects E1 and
E2 as in Fig. 10(a). Then, each component of ∂(E1 ∪ b1 ∪ b2 ∪ E2) winds around
the longitude of V1 at least two times. However, at least one component bounds

Fig. 9. Deformation of b2 along b1.
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(a) (b)

Fig. 10. b1, b2, · · · , bm−1 in V1.

a disk in V2, because P consists of an annulus and a disk at this stage. This is a
contradiction.

In general case, let b1, b2, . . . , bk be the bands produced by the boundary com-
pressions, where b1 connects E1 and Em, b2 connects E2 and Em−1, . . . , bk connects
Ek and Em−k+1. In this case we may assume m = 2k. Then as in the case of m = 2,
let bk+1, bk+2, . . . , b2k be the bands produced by the boundary compressions, where
bk+1 connects Ek and Ek+1, . . . , b2k connects E1 and E2k. Then, each component
of ∂P at this stage is an essential loop in ∂V1 winding around the longitude of V1

at least two times. However, at this stage, P has at least one disk component. This
is a contradiction. Afterall, we see that Case (1) does not occur.

Next suppose we are in Case (2). By the arguments similar to Case (1), we may
assume that all components of G ∩ P are parallel as in Case (1).

Perform the sequence of boundary compressions at α1, α2, . . . αm−1. Then, the
sequence of bands b1, b2, · · · bm−1 are produced as in Fig. 10(b), where b1 connects
E0 and E1, b2 connects E1 and E2, . . . , bm−1 connects Em−2 and Em−1. At the
(m − 1)th stage, P is an annulus and ∂P consists of ∂Em and an arc connecting
the two points K3 ∩ ∂V2. Then, ∂Em intersects G in a single point. Thus by taking
Em as D1 and by taking G as D2, we can complete the proof of the claim.

Let N(Di) be a regular neighborhood of Di in Vi (i = 1, 2). If Di ∩ ∆i �= ∅,
then by standard cut and paste arguments we can retake ∆i so that Di ∩ ∆i = ∅.
Put W1 = cl(V1 − N(D1)) ∪ N(D2), W2 = cl(V2 − N(D2)) ∪ N(D1). Then, by the
above claim, both W1 and W2 are 3-balls and (W1, W2) is a genus zero Heegaard
splitting of S3. Put K1∩Wi = αi, K2∩Wi = βi, and K3∩Wi = γi (i = 1, 2). Then,
since cl(V1 −N(D1))∩N(D2) is a disk, a trivializing disk for α1 in cl(V1 −N(D1))
and ∆1 extend to trivializing disks for α1 and γ1 in W1 disjoint from a trivializing
disk for β1. Hence, (W1, α1 ∪ β1 ∪ γ1) is a 3-string trivial tangle, and by the same
arguments (W2, α2 ∪ β2 ∪ γ2) is a 3-string trivial tangle too. Thus K1 ∪K2 ∪K3 is
a 3-bridge link, and this completes the proof of Lemma 8.

Now, we prove Theorem 6. Let L = K1∪K2 be a tunnel number one link of type
II with an essential torus, and let T be the essential torus in the exterior. Let γ be
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an unknotting tunnel of type II of L with K1 ∩ γ = ∂γ, and put V1 = N(K1 ∪ γ)
and V2 = cl(S3 − V1). Then, (V1, V2) is a genus two Heegaard splitting of S3 as
illustrated in Fig. 1(b).

By considering the intersections of T and K1∪γ, we may assume that T ∩V1 =
D1 ∪D2 ∪ · · · ∪Dn, where Di(i = 1, 2, . . . n) is a disk properly embedded in V1 not
∂-parallel as illustrated in Fig. 11.

Put P = T ∩ V2, then P is a genus one surface properly embedded in V2 with
n boundary components. Suppose n is minimal among all such essential tori. Then
by the minimality of n, P is incompressible in V2 − K2. Let E be a meridian disk
of V2 with E ∩K2 = ∅. Then, we may assume that each component of P ∩E is an
arc properly embedded in both P and E.

Let α be an outermost arc component of P ∩ E in E, and let ∆ be the corre-
sponding outer most disk. Then, we can perform a boundary compression of P at
α along ∆ from V2 to V1, and we get a band, say b, in V1. If b connects two differ-
ent disks, then we can reduce the number of the components of T ∩ V1, and this
contradicts the minimality of n. Thus b meets a single disk and we get an annulus
b∪D1 or b∪Dn properly embedded in V1, because the annulus is incompressible in
V1 − K1. If the annulus is compressible in V1, then there is a compressing disk for
the annulus intersecting K1 in a single point. Then, we see that L is composite and
C(1) holds by Theorem 3. Thus we may assume that the annulus is incompress-
ible in V1, i.e. b winds around a handle at least once. We note that if a separating
incompressible annulus winds around the handle not containing K1 exactly once,
then it is ∂-parallel and we can reduce the number n.

Then, by [8, Lemma 3.4] and by the arguments similar to the proof of [10,
Lemmata 1.1 and 1.5] and [12, Theorem A], we have the following:

Lemma 9. Under the above situations, by changing V1 and V2 if necessary, T can
be isotoped into one of the following positions illustrated in Fig. 12:

(1) T ∩ V1 is a separating incompressible annulus winding around the handle not
containing K1 p times for some |p| > 1, and T ∩V2 is a separating incompress-
ible annulus winding around the handle not containing K2 q times for some
|q| > 1,

Fig. 11. T ∩ V1.

1950054-13



July 17, 2019 11:35 WSPC/S0218-2165 134-JKTR 1950054

K. Morimoto

Fig. 12. Annuli in handlebodies.

(2) T ∩ V1 is a separating incompressible annulus winding around the handle not
containing K1 p times for some |p| > 1, and T ∩V2 is a separating incom-
pressible annulus winding around the handle containing K2 q times for some
|q| > 0,

(3) T ∩ V1 is a separating incompressible annulus winding around the handle con-
taining K1 p times for some |p| > 0, and T ∩ V2 is a separating incompressible
annulus winding around the handle containing K2 q times for some |q| > 0,
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(4) T ∩ V1 consists of two separating incompressible annuli, one of them is wind-
ing around the handle containing K1 p times for some |p| > 0, the other is
winding around the handle not containing K1 q times for some |q| > 1, and
T ∩V2 consists of two non-separating incompressible annuli winding the handle
containing K2 r times for some |r| > 0,

(5) T ∩V1 consists of two non-separating incompressible annuli winding the handle
containing K1 p times for some |p| > 0, and T ∩ V2 consists of two non-
separating incompressible annuli winding the handle containing K2 q times for
some |q| > 0.

We omit the proof of this lemma, and by using this lemma we prove Theorem 6.
If L is composite, then by Theorem 3 we have the condition C(1). Hence, we may
assume that L is prime.

Suppose we are in Case (1). Let Xi be a genus two handlebody in Vi and Yi a
solid torus in Vi cut off by the annulus T ∩ Vi for i = 1, 2. Put X = X1 ∪ X2 and
Y = Y1 ∪ Y2. Then, X is a (1, 1)-knot exterior in some lens space as illustrated
in the left-hand of Fig. 13, and Y = E(p, q). Since |p| > 1 and |q| > 1, Y is a
non-trivial torus knot exterior, and hence X is a solid torus. Since X ∪ Y is S3, a
regular fiber of the Sefert fibered space Y = E(p, q) is identified with a longitude
of the solid torus X and it is a meridian of the (1, 1)-knot. Hence, the lens space
is S3.

Then we denote the (1, 1)-knot in S3 with the (1, 1)-decomposition by K3 as
illustrated in the right-hand of Fig. 13. Then K3 is a trivial knot in S3 because X

is a solid torus, and by Lemma 8, K1 ∪K2 ∪K3 is a 3-bridge link. If at least one of
K1∪K3 and K2∪K3 is a trivial link, then L is a composite link or a Hopf link, and
this is a contradiction. Hence, both K1 ∪ K3 and K2 ∪ K3 are non-trivial 2-bridge
links. Thus, L is an MS-link and we have the condition C(4).

Suppose, we are in Case (2). Let Xi be a genus two handlebody in Vi and Yi a
solid torus in Vi cut off by the annulus T ∩ Vi for i = 1, 2. Put X = X1 ∪ X2 and

Fig. 13. (1, 1)-knot.
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Y = Y1 ∪ Y2. Then, X is a (1, 1)-knot exterior in some lens space as in Case (1),
and Y = E(p, q) with |p| > 1 and |q| > 0.

If |q| > 1, then E(p, q) is a non-trivial torus knot exterior and K2 is an excep-
tional fiber of the Seifert fibered space E(p, q). Then, as in Case (1), X is a solid
torus, the lens space is S3 and the (1, 1)-knot is a trivial knot in S3. By putting
the trivial knot K3 and by [12, Lemma 2.3], we have the link K1 ∪ K3 defined to
get an MS-knot. In addition, a meridian of the trivial knot K3 is identified with
a regular fiber of the Seifert fibered space E(p, q). Thus, L is an union of an MS-
knot and an exceptional fiber of the Seifert fibered space E(p, q), and we have the
condition C(2).

If |q| = 1, then E(p, q) is a solid torus and K2 is a regular fiber of the Seifert
fibration of the solid torus. By using Cyclic Surgery Theorem of [1] and by [13], X

is the Seifert fibered space over a disk with one or two exceptional fibers.
If it has one exceptional fiber, then X is a solid torus, i.e. X is a trivial knot

exterior of S3. Then by the same arguments as above, we see that L is an union
of an EMS-knot and a regular fiber of E(p, q), and we have the condition C(3). If
it has two exceptional fibers, then the (1, 1)-knot is a non-trivial torus knot which
is not a core of the lens space. Then by [10, Theorem 3], the (1, 1)-knot has a
unique (1, 1)-decomposition and we can perform boundary compression from V1 to
V2 and from V2 to V1 simultaneously. Then we have the same situation as the case
of |q| > 1 because X has two exceptional fibers. Thus, we have the condition C(2).

Suppose, we are in Case (3). Let Xi be a genus two handlebody in Vi and Yi a
solid torus in Vi cut off by the annulus T ∩ Vi for i = 1, 2. Put X = X1 ∪ X2 and
Y = Y1 ∪ Y2. Then, X is a (1, 1)-knot exterior in some lens space, and Y = E(p, q)
with |p| > 0 and |q| > 0. Since X contains neither K1 nor K2, X is not a solid
torus. If |p| > 1 and |q| > 1, then E(p, q) is not a solid torus and T is incompressible
torus in S3. This is a contradiction. Suppose |p| > 1 and |q| = 1 or |p| = 1 and
|q| > 1, then by the same arguments as the proof of Case (2), X is a Seifert fibered
space over a disk with one or two exceptional fibers. If it has one exceptional fiber,
then X is a solid torus and this is a contradiction. If it has two exceptional fibers,
then by the same arguments as the proof of Case (2), we can perform boundary
compressions from V1 to V2 and from V2 to V1 simultaneously. Then, we have the
same situation as the Case (1) and we have the condition C(4).

Suppose |p| = |q| = 1. Then, K1 is isotopic to a component of ∂(T ∩ V1) in V1

and K2 is isotopic to a component of ∂(T ∩ V2) in V2. This means K1 and K2 are
two copies of a doubly primitive knot in ∂V1 = ∂V2. Hence, L is a DP-link and we
have the condition C(5).

Suppose, we are in Case (4). Let X1 be a genus two handlebody in V1, and Y 1
1

and Y 2
1 two solid tori in V1 cut off by the two annuli T ∩ V1. Let X2 be a genus

two handlebody in V2 and Y2 a solid torus in V2 cut off by the annulus T ∩ V2.
Put X = X1 ∪ X2 and Y = (Y 1

1 ∪ Y 2
1 ) ∪ Y2. Then, X is a 2-bridge knot exterior

as illustrated in Fig. 14, and Y is a Seifert fibered space over a disk with three
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Fig. 14. 2-bridge knot.

exceptional fibers whose indices are |p| > 0, |q| > 1 and |r| > 0. Since X contains
neither K1 nor K2, the 2-bridge knot is a non-trivial knot. If |p| > 1 or |r| > 1, then
Y is not a solid torus and T is an incompressible torus in S3. This is a contradiction,
and hence |p| = |r| = 1. Then, Y is a solid torus and this means that a non-trivial
Dehn surgery along a non-trivial knot yields S3. Then, we have a contradiction by
[4, Theorem 2], Thus Case (4) does not occur.

Suppose we are in Case (5). Let Xi be a genus two handlebody in Vi and Yi a
solid torus in Vi cut off by the annulus T ∩ Vi for i = 1, 2. Put X = X1 ∪ X2 and
Y = Y1 ∪ Y2. Then X is a 2-bridge knot exterior and Y is a Seifert fibered space
over a Möbius band with 0, 1, or 2 exceptional fibers. This means that S3 contains
a Klein bottle. This contradiction shows that Case (5) does not occur.

On the other hand, if L satisfies one of the five conditions C(1), C(2), C(3),
C(4) and C(5), then by tracing back the above arguments L has an essential torus
in the exterior. This completes the proof of Theorem 6.

4. Tangle Decompositions

First we prepare the following fact which is straightforward from the definition of
(1, 1)-decompositions. So we omit the proof.

Fact 10. A knot K has a (1, 1)-decomposition if and only if K is in ∂V for a
standard genus two handlebody V in S3 such that K ∩ D1 = a single point and
K ∩ D2 = n points for some n ≥ 0 as illustrated in Fig. 15(a), where D1 and D2

are meridian disks of V , each of which has a canceling disk in the complementary
handlebody.

In Fig. 15(a), by cutting open V with the disks D1, D2, we can get a 3-ball B

and n + 1 strings in ∂B as in Fig. 15(b). Conversely, let (B, t1 ∪ t2 ∪ · · · ∪ tn ∪ tn+1)
be an n + 1-string tangle such that t1 ∪ · · · ∪ tn+1 is parallel to ∂B and by closing
the tangle with n + 1 strings we can get a (1, 1)-knot in ∂V for a standard genus
two handlebody V , then we call (B, t1 ∪ t2 ∪ · · · ∪ tn ∪ tn+1) a (1, 1)-tangle as in
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(a) (b)

Fig. 15. (1, 1)-knot.

Fig. 15(b). We note that if n = 1 then a (1, 1)-tangle is a rational tangle. Then, we
have:

Proposition 11. Let K1 be a 2-bridge knot and K2 a (1, 1)-knot, and let L =
K1 ∪ K2 be a link illustrated in Fig. 16(a). Then, L is a tunnel number one link of
type II not of type I.

Proof. Let γ be an arc in the 3-ball B1 which connects the two strings of the
rational tangle so that γ is a level arc of the 2-string trivial tangle. Then, K1 ∪ γ is
deformed into a trivial glasses as in Fig. 16(b). This means that the complementary
space of K1 ∪ γ is a genus two handlebody, say V , and K2 is in V . Then, since the
(1, 1)-tangle in B2 is parallel to ∂B2 and since V can be regarded as a handlebody
obtained by adding two 1-handles to B2 as in Fig. 15, we see that K2 is parallel
to ∂V and there is a canceling meridian disk D intersecting K2 in a single point.
This shows that K2 is a core of V and L is a tunnel number one link of type II.
In addition, neither K1 nor K2 is a trivial knot. Then, by [3, Theorem 1.5] and
Proposition 12(1) below, L is not of type I. This completes the proof.

For essential tangle decompositions of tunnel number one links obtained in the
above proposition, we have:

(a) (b)

Fig. 16. L = K1 ∪ K2.
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Fig. 17. Tangle decompositions.

(a) (b)

Fig. 18. (n + 1, n + 2)-torus knot.

Proposition 12. (1) The link L in Proposition 11 has a 2-string essential tangle
decomposition. (2) For any n > 0, there are infinitely many tunnel number one links
of type II not of type I each of which has a 2-string essential tangle decomposition
and an n + 1-string essential tangle decomposition.

Proof. (1) Decompose the link L in Proposition 11 into the two tangles with the
line 1© as in Fig. 17. Then the decomposition with the line 1© is a 2-string essential
tangle decomposition because K1 and K2 are non-trivial knots.

(2) For the links in Proposition 11, let K2 be an (n + 1, n + 2)-torus knot for
n > 0 as in Fig. 18(a). Decompose the link L into the two tangles with the line
2© as in Fig. 17. Then we can see that the decomposition with the line 2© is an
n + 1-string essential tangle decomposition as in Fig. 18(b). This completes the
proof.
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